问题描述
visreg
包允许直接绘制一个统计模型,我发现这个统计模型非常方便,可以检查是否有任何错误,并检查我们是否正确理解估计的含义。我很乐意将 visreg
的功能与 ggplot
的难以置信的灵活性结合起来。我希望能够在ggplot代码行中直接调用模型。这是否可行(最终通过直接修改 visreg
函数)? require(visreg)
require(ggplot2)
y = c(rnorm( 40,10,1),rnorm(20,11,1),rnorm(5,12,1))
x =因子(c(rep(1,40),rep(2,20),rep 3,5)))#这一行已经改变!
dt = data.frame(x = x,y = y)
m = lm(y〜x,data = dt)
我希望能够在 ggplot $中直接调用对象
m
c $ c>函数来表示我的统计模型 m
。使用 visreg
,它只是:
visreg(m)
下面的代码不是我正在寻找的,因为它不直接调用对象 m
pre $ g $ p $ ggplot(dt,aes(x,y))+
geom_boxplot(aes(group = x),alpha = 0.5)+ geom_jitter()
Just FYI, visreg
现在支持 ggplot2
输出:
visreg(m,gg = TRUE)
产生
The package visreg
allows to plot directly a statistical model which I find very convenient to check if anything gone wrong and to check if we understand correctly what the estimates mean. I would love to combine the functionality of visreg
with the incredible flexibility of ggplot
. I'd like to be able to directly call the model in a ggplot code line. Is this feasible (eventually by directly modifying the visreg
function)?
For example:
require(visreg)
require(ggplot2)
y = c(rnorm(40,10,1), rnorm(20,11,1), rnorm(5,12,1))
x=factor(c(rep(1,40), rep(2,20), rep(3,5))) # this line has changed!
dt=data.frame(x=x, y=y)
m = lm(y~x, data=dt)
I'd like to be able to directly call the object m
in a ggplot
function in order to represent my statistical model m
. With visreg
, it simply is:
visreg(m)
The below code is NOT what I am looking for as it does not directly call the object m
ggplot(dt, aes(x,y)) +
geom_boxplot(aes(group=x), alpha=0.5)+geom_jitter()
Just FYI, visreg
now supports ggplot2
output:
visreg(m, gg=TRUE)
produces
这篇关于直接用ggplots绘制一个统计模型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!