本文介绍了对数算法的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我需要以任何精度评估任何底数的对数。是否有针对此的算法?我使用Java编程,所以我对Java代码很好。
I need to evaluate a logarithm of any base, it does not matter, to some precision. Is there an algorithm for this? I program in Java, so I'm fine with Java code.
也许可以回答我的问题,但我不理解。可以弄清楚吗?
How to find a binary logarithm very fast? (O(1) at best) might be able to answer my question, but I don't understand it. Can it be clarified?
推荐答案
使用此身份:
其中 log
可以是任何底数的对数函数, n
是数字, b
是基数。例如,在Java中,这将找到以2为底的对数256:
Where log
can be a logarithm function in any base, n
is the number and b
is the base. For example, in Java this will find the base-2 logarithm of 256:
Math.log(256) / Math.log(2)
=> 8.0
使用基数 e
。还有,它使用基数 10
。
这篇关于对数算法的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!