0 写在前面
机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。
1 独依赖假设
在机器学习强基计划4-3:详解朴素贝叶斯分类原理 | 例题分析 | Python实现中我们介绍了朴素贝叶斯之所以“朴素”,是因为其给定了很强的属性独立性假设。然而,属性独立性假设在实际上很难成立,因此引入半朴素贝叶斯分类器(Semi-Naïve Bayes Classifier),其核心思想是:适当考虑部分属性的相互依赖,从而既简化了联合概率计算,又不至于彻底忽略属性间的强依赖关系。
半朴素贝叶斯分类器最常见的建模策略是独依赖估计(One-Dependent Estimator, ODE),即假设每个属性在类别外最多依赖于一个属性
f ∗ ( x ) = a r g max C ∈ Y P ( C ) ∏ i = 1 d P ( x i ∣ C , p a i ) {f^*\left( \boldsymbol{x} \right) =\underset{C\in \mathcal{Y}}{\mathrm{arg}\max}P\left( C \right) \prod_{i=1}^d{P\left( x_i|C, pa_i \right)}} f∗(x)=C∈YargmaxP(C)i=1∏dP(xi∣C,pai)
其中 p a i pa_i pai为属性 x i x_i xi所依赖的父属性。若对 ∀ x i \forall x_i ∀xi确定了其 p a i pa_i pai,则可按朴素贝叶斯的方式进行贝叶斯分类,因此问题的核心转换为如何确定 p a i pa_i pai。
另一个问题是,可以假设属性依赖多个父属性吗?答案是:高阶依赖估计的准确性要求训练样本随指数级增加,在有限样本条件下,一般不适合采用。
2 AODE原理
先介绍一个比较直接的想法——假设所有属性都依赖于同一个父属性,称该属性为超父(super-parent),这种半朴素贝叶斯分类器称为SPODE(Super-Parent ODE)算法。
f ∗ ( x ) = a r g max C ∈ Y P ( C ) ∏ i = 1 d P ( x i ∣ C , p a ) f^*\left( \boldsymbol{x} \right) =\underset{C\in \mathcal{Y}}{\mathrm{arg}\max}P\left( C \right) \prod_{i=1}^d{P\left( x_i|C, pa \right)} f∗(x)=C∈YargmaxP(C)i=1∏dP(xi∣C,pa)
建立在SPODE的基础上,AODE(Averaged ODE)算法是一种基于集成学习机制、更为强大的ODE分类器,其将每个属性作为超父构造SPODE,再加权计算各属性间的平均依赖,即
f ∗ ( x ) = a r g max C ∈ Y ∑ i = 1 , ∣ D x i ∣ ⩾ m d P ( C , x i ) ∏ j = 1 d P ( x j ∣ C , x i ) f^*\left( \boldsymbol{x} \right) =\underset{C\in \mathcal{Y}}{\mathrm{arg}\max}\sum_{i=1,|\boldsymbol{D}_{x_i}|\geqslant m}^d{P\left( C,x_i \right) \prod_{j=1}^d{P\left( x_j|C, x_i \right)}} f∗(x)=C∈Yargmaxi=1,∣Dxi∣⩾m∑dP(C,xi)j=1∏dP(xj∣C,xi)
其中 D x i \boldsymbol{D}_{x_i} Dxi为第 i i i属性上取值为 x i x_i xi的样本子集, m m m默认设为30。类似地,AODE的拉普拉斯平滑修正为
{ P ( C , x i ) = ∣ D C , x i ∣ + 1 ∣ D ∣ + N × N i P ( x j ∣ C , x i ) = ∣ D C , x i , x j ∣ + 1 ∣ D C , x i ∣ + N j \begin{cases} P\left( C,x_i \right) =\frac{|\boldsymbol{D}_{C,x_i}|+1}{|\boldsymbol{D}|+N\times N_i}\\ P\left( x_j|C,x_i \right) =\frac{|\boldsymbol{D}_{C,x_i,x_j}|+1}{|\boldsymbol{D}_{C,x_i}|+N_j}\\\end{cases} ⎩ ⎨ ⎧P(C,xi)=∣D∣+N×Ni∣DC,xi∣+1P(xj∣C,xi)=∣DC,xi∣+Nj∣DC,xi,xj∣+1
简单说,AODE就是SPODE的加权平均版本
接下来基于上述原理开始编程,并和朴素贝叶斯分类做个比较,看性能有没提升
3 Python实现
3.1 计算类先验概率
'''
* @breif: 计算类先验概率P(C, xi)
* @param[in]: None
* @retval: None
{
C1: {
超父属性(只能是离散属性)
pa1: {
超父属性值
px1: {
p: p(C1, x1)
N: n(C1, x1)
}
...
pxn: ...
num(pa1): int 属性a1的可取值数
}
...
pan: ...
}
...
Cn: ...
num: 类别数
}
'''
def calPrior(self):
# 可选的类别数
label = np.unique(self.y)
self.prior['num'] = len(label)
# 计算先验概率
for _label in label:
self.prior[_label] = {}
# 获取标签取值_label的样本集
labelIndex = np.squeeze(np.argwhere(np.squeeze(self.y)==_label))
labelX = self.X[:, labelIndex]
# 超父特征层
for i in range(self.d):
# 属性i的可选属性值列表
attr = np.unique(self.X[i, :])
# 可选属性数
attrNum = len(attr)
# 离散属性(只有离散属性能作为超父属性)
if attrNum <= 0.85 * self.m:
self.prior[_label][str(i)] = {}
self.prior[_label][str(i)]['num'] = attrNum
# 计算每个取值的联合先验概率
for a in attr:
self.prior[_label][str(i)][a] = {}
n = int(sum(labelX[i, :] == a))
self.prior[_label][str(i)][a]['p'] = (n + self.laplace) / (self.m + self.prior['num'] * attrNum)
self.prior[_label][str(i)][a]['N'] = n
3.2 计算属性后验概率
'''
* @breif: 计算属性后验概率P(xj|C, xi)
* @param[in]: None
* @retval: None
{
C1: {
超父属性(只能是离散属性)
pa1: {
超父属性值
px1: {
常规属性
a1: {
type: discrete 离散属性
x1: p(x1)
...
xn: p(xn)
num(a1): int 属性b1的可取值数
}
a2: {
type: continous 连续属性
mean: 样本均值
std: 标准差
}
}
...
pxn: ...
}
...
pan: ...
}
...
Cn: ...
num: 类别数
}
'''
def calPosterior(self):
if not self.prior:
raise ValueError("please calculate prior first!")
# 可选的类别数
label = np.unique(self.y)
self.posterior['num'] = len(label)
# 标签层
for _label in label:
self.posterior[_label] = {}
# 获取标签取值_label的样本集
labelIndex = np.squeeze(np.argwhere(np.squeeze(self.y)==_label))
labelX = self.X[:, labelIndex]
# 超父特征层
for pa, paDict in self.prior[_label].items():
self.posterior[_label][pa] = {}
# 超父属性值层
for paVal, paValDict in paDict.items():
if isinstance(paValDict, dict):
self.posterior[_label][pa][paVal] = {}
# 常规属性层
for i in range(self.d):
# 常规属性为超父属性则跳过
if i == pa:
continue
# 获取超父属性值为paVal的样本子集
paIndex = np.squeeze(np.argwhere(labelX[int(pa), :]==paVal))
paLabelX = labelX[:, paIndex].reshape(self.d, -1)
_, mpa = paLabelX.shape
self.posterior[_label][pa][paVal][str(i)] = {}
# 属性i的可选属性值列表
attr = np.unique(self.X[i, :])
# 可选属性数
attrNum = len(attr)
# 离散属性
if attrNum <= 0.85 * self.m:
self.posterior[_label][pa][paVal][str(i)]['num'] = attrNum
self.posterior[_label][pa][paVal][str(i)]['type'] = 'discrete'
# 计算每个取值的后验概率
for a in attr:
n = int(sum(paLabelX[i, :] == a))
self.posterior[_label][pa][paVal][str(i)][a] = \
(n + self.laplace) / (self.prior[_label][pa][paVal]['N'] + attrNum)
# 连续属性
else:
self.posterior[_label][pa][paVal][str(i)]['type'] = 'continous'
# 发生的概率足够大,才会产生足够的样本
if mpa > 1:
self.posterior[_label][pa][paVal][str(i)]['std'] = paLabelX[i, :].std(ddof=1)
self.posterior[_label][pa][paVal][str(i)]['mean'] = paLabelX[i, :].mean()
else:
self.posterior[_label][pa][paVal][str(i)]['std'] = self.sigmaEpi
self.posterior[_label][pa][paVal][str(i)]['mean'] = 0
3.3 预测
采用机器学习强基计划2-3:图文详解决策树预剪枝、后剪枝原理+Python实现的数据集训练,获得准确率如下
model = AODE(X, y)
# 训练模型
model.train()
# 模型预测
predictY = model.predict(X)
print("错误:", np.sum(predictY!=y.T), "个\n准确率为:", np.sum(predictY==y.T)/y.size)
>>> 错误: 0 个
>>> 准确率为: 1.0
而在机器学习强基计划4-3:详解朴素贝叶斯分类原理 | 例题分析 | Python实现中准确率只有83.2%,可见适当的依赖性假设有助于提高分类准确率
🔥 更多精彩专栏: