本文介绍了两点之间的最近距离(不相交集)的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

此问题是一种最接近对两个不相交集之间的。上侧画面pssed这个问题EX $ P $。有两种不相交集,蓝色小点在-x平面上,红点在+ x平面的。

我要计算最小距离(距离| Y2,Y1 | + | X2 - X1 |)之间的一个蓝色圆点和一个红点,我觉得使用二进制搜索查找距离。如何使用二进制搜索这样的问题?我挣扎的唯一的 EX pressing二进制搜索两个不相交集我已经知道了一组,但我不知道的情况下两个分离的事。

++)它可以以线性时间使用Delaunay三角? (才对啊,这是我的好奇心,我想用二进制搜索)

低于code,我已经编码一组的情况下(使用解决问题的方法,分而qonquer)和coverting两个不相交集。我不明白怎么做两套。例如,提示。好吧..请帮助我的人?​​

 的#include<的iostream>
#包括<算法>
#包括<了iomanip>
#包括< CMATH>

/ **
测试输入
10
-16 -4
-1 -3
-9 -1
-4 -10
-11 -6
-20 4
-13 6
-3 -10
-19 -1
-12 -4
10
8 2
10 3
10 10
20 -3
20 3
16 2
3 -5
14 -10
8 -2
14 0

10
-3 39
-2 -28
-1 20
-3 11
-3 45
-2 -44
-1 -47
-5 -35
-5 -19
-5 -45
10
27 5
28 0
28 5
21 5
2 3
13 -1
16 -2
20 -2
33 -3
27 1
 ** /


使用名字空间std;

const int的MAX = 10001;

结构点{
    INT X,Y;
};

布尔xCompare(结构来看,结构点);
布尔yCompare(结构来看,结构点);
INT DIS(结构来看,结构点);

INT ABSD(INT);
INT跟踪(INT,INT,INT,INT);

点p [MAX] Q [MAX],TMP [MAX]

诠释的main(){

    INT离开;
    诠释权;

    scanf函数(%D \ N,和放大器;左);
    memset的(对,0,sizeof的(P));
    memset的(Q,0,sizeof的(Q));
    memset的(TMP,0,sizeof的(TMP));


    的for(int i = 0; I<左;我++){
        CIN>> P [I] .X>> P [I] .Y;
    }

    scanf函数(%D \ N,和放大器;右一);

    对于(INT J = 0; J<权; J ++){
        CIN>> Q [J] .X>> Q [J] .Y;
    }

    排序(P,P +左,xCompare);
    排序(Q,Q +吧,xCompare);

    INT分钟=跟踪(0,0,左1,右1);

    的printf(%D \ N,分);


    / **这是一组情况。
    而(真){
        CIN>> N;

        如果(N == 0)打破;

        memset的(对,0,sizeof的(P));
        memset的(TMP,0,sizeof的(TMP));

        的for(int i = 0;我n种;我++)
            CIN>> P [I] .X>> P [I] .Y;

        排序(P,P + N,xCompare);

        INT分钟=微量(0,N-1);

        如果(分钟< 10000&安培;&安培; N大于1){
            COUT<<固定;
            COUT<<集precision(4)<<分钟<&其中; ENDL;
        }
        其他
            COUT<< 无穷大<< ENDL;
    }
     ** /

    返回0;
}

INT跟踪(INT LOW1,​​诠释LOW2,诠释HIGH1,诠释HIGH2){

    如果(高温1  - 低温1 3;){
        int值= DIS(P [低温1],Q [LOW2 + 1]);
        INT nextValue;

        如果(高温1  -  LOW1 == 2){
            nextValue = DIS(P [低温1],Q [LOW2 + 2]);

            如果(值GT; nextValue)
                值= nextValue;

            nextValue = DIS(对[LOW1 + 1],则q [LOW2 +2]);

            如果(值GT; nextValue)
                值= nextValue;
        }
        返回值;
    }
    其他{

        / *分割和放大器; QONQUER * /

        INT MID1 =(低温1 +高温1)>> 1;
        INT MID2 =(LOW2 + HIGH2)>> 1;
        INT CNT = 0;

        INT leftValue =跟踪(LOW1,​​LOW2,MID1,MID2); //左跟踪
        INT rightValue =跟踪(MID1 + 1,MID2 + 1,高温1,高温2); //正确跟踪

        //最小值找到
        int值= leftValue< rightValue? leftValue:rightValue;

        / *中条件检查:Y行* /

        //节省左
        的for(int i =低温1; I< = MID1;我++){
            如果(ABS(P [I] .X  -  Q [MID2] .X)< =值)
                TMP [CNT ++] = P [i];
        }

        //节省权
        的for(int i = MID1 + 1; I< =高温1;我++){
            如果(ABSD(P [I] .X  -  Q [MID2 + 1] .X)< =值)
                TMP [CNT ++] = P [i];
        }

        排序(TMP,TMP + CNT,yCompare);

        的for(int i = 0; I< CNT;我++){
            诠释计数= 0;

            为(中间体J =-3;计数&10 6安培;&安培; J&所述; CNT; J ++){
                如果(J> = 0&功放;&安培;!I = j)条{
                    INT距离= DIS(TMP [我],TMP [J]);

                    如果(值GT;距离)
                        值=距离;

                    算上++;
                }
            }
        }
        返回值;
    }
}

INT ABSD(INT X){
    如果(X℃,)
        返回-x;
    返回X;
}

诠释DIS(结构点,结构点b){
    返程(ABS(a.x-b.x)+ ABS(a.y-b.y));
}

布尔xCompare(结构点了,结构点b){
    返回a.x< b.x;
}

布尔yCompare(结构点了,结构点b){
    返回a.y<通过;
}
 

解决方案

这个问题通常被称为最近双色对问题。这里有几个方法。

  1. Delaunay三角。 (这当然与L-作品(=欧几里德)距离。我认为步骤概括为L 1 )对于每一个Delaunay三角(可以有超过三分之一的退化例),存在一个最小生成树其边缘都属于三角测量。反过来,这种最小生成树包含最短边渡色类之间的切换。

  2. 最近邻居的数据结构。

  3. 如果它被赋予了红点从蓝点分离X,那么你可能能够适应的O(n)的合并Shamos - 霍伊分而治之算法的步骤最接近(单色)对问题,说明这里

This problem is a kind of closest pair between two disjoint set.Upperside picture is expressed this problem. there is two kind of disjoint set, blue dots in -x plane, red dots in +x plane.

I want to calculate minimum distance(distance is |y2-y1| + |x2 - x1|) between one blue dot and one red dot, and I think use binary search for finding distance. How to use binary search this kind of problem?I struggle on only expressing binary search two disjoint sets. I have already know for one set, but I don't know in case two disjoint sets.

++ ) it is can in linear time using Delaunay triangulation? (ah, it is only my curiosity, I want to use binary search)

below code which I had already coding one set case(using problem-solving technique, divide and qonquer) and coverting to two disjoint set. I don't understand how to do in two sets.Example, Hint. okay.. please someone help me?

#include <iostream>
#include <algorithm>
#include <iomanip>
#include <cmath>

/**
test input
10
-16 -4
-1 -3
-9 -1
-4 -10
-11 -6
-20 4
-13 6
-3 -10
-19 -1
-12 -4
10
8 2
10 3
10 10
20 -3
20 3
16 2
3 -5
14 -10
8 -2
14 0

10
-3 39
-2 -28
-1 20
-3 11
-3 45
-2 -44
-1 -47
-5 -35
-5 -19
-5 -45
10
27 5
28 0
28 5
21 5
2 3
13 -1
16 -2
20 -2
33 -3
27 1
 **/


using namespace std;

const int MAX = 10001;

struct point{
    int x,y;
};

bool xCompare(struct point, struct point);
bool yCompare(struct point, struct point);
int dis(struct point, struct point);

int absd(int);
int trace(int,int,int,int);

point p[MAX], q[MAX], tmp[MAX];

int main(){

    int left;
    int right;

    scanf("%d\n", &left);
    memset(p,0,sizeof(p));
    memset(q,0,sizeof(q));
    memset(tmp,0,sizeof(tmp));


    for(int i=0; i<left; i++){
        cin >> p[i].x >> p[i].y;
    }

    scanf("%d\n", &right);

    for(int j=0; j<right; j++){
        cin >> q[j].x >> q[j].y;
    }

    sort(p, p+left, xCompare);
    sort(q, q+right, xCompare);

    int min = trace(0,0, left-1, right-1);

    printf("%d\n", min);


    /** this is one set case.
    while(true){
        cin >> n;

        if(n == 0)  break;

        memset(p,0,sizeof(p));
        memset(tmp,0,sizeof(tmp));

        for(int i= 0;i<n;i++)
            cin >> p[i].x >> p[i].y;

        sort(p,p+n,xCompare);

        int min = trace(0,n-1);

        if(min < 10000 && n > 1){
            cout << fixed;
            cout << setprecision(4) << min << endl;
        }
        else
            cout << "INFINITY" << endl;
    }
     **/

    return 0;
}

int trace(int low1, int low2, int high1, int high2){

    if(high1 - low1 < 3){
        int value = dis(p[low1],q[low2+1]);
        int nextValue;

        if(high1 - low1 == 2){
            nextValue = dis(p[low1],q[low2+2]);

            if(value > nextValue)
                value = nextValue;

            nextValue = dis(p[low1+1],q[low2+2]);

            if(value > nextValue)
                value = nextValue;
        }
        return value;
    }
    else{

        /* DIVIDE & QONQUER */

        int mid1 = (low1 + high1) >> 1;
        int mid2 = (low2 + high2) >> 1;
        int cnt = 0;

        int leftValue = trace(low1,low2,mid1,mid2);     // left trace
        int rightValue = trace(mid1+1,mid2+1,high1,high2);  // right trace

        // min value find
        int value = leftValue < rightValue ? leftValue : rightValue;

        /* Middle Condition Check : Y Line */

        // saving left
        for(int i = low1;i<=mid1;i++){
            if(abs(p[i].x - q[mid2].x) <= value)
                tmp[cnt++] = p[i];
        }

        // saving right
        for(int i = mid1+1;i<=high1;i++){
            if(absd(p[i].x - q[mid2+1].x) <= value)
                tmp[cnt++] = p[i];
        }

        sort(tmp,tmp+cnt,yCompare);

        for(int i = 0;i<cnt;i++){
            int count = 0;

            for(int j = i-3;count < 6 && j < cnt;j++){
                if(j >= 0 && i != j){
                    int distance = dis(tmp[i],tmp[j]);

                    if(value > distance)
                        value = distance;

                    count++;
                }
            }
        }
        return value;
    }
}

int absd(int x){
    if( x < 0)
        return -x;
    return x;
}

int dis(struct point a, struct point b){
    return (abs(a.x-b.x) + abs(a.y-b.y));
}

bool xCompare(struct point a, struct point b){
    return a.x < b.x;
}

bool yCompare(struct point a, struct point b){
    return a.y < b.y;
}

This problem is usually called the closest bichromatic pair problem. Here are a couple approaches.

  1. Delaunay triangulation. (This certainly works with L (= Euclidean) distances; I think the steps generalize to L.) For every Delaunay triangulation (there can be more than one in degenerate cases), there exists a minimum spanning tree whose edges all belong to the triangulation. In turn, this minimum spanning tree contains a shortest edge crossing the cut between the color classes.

  2. Nearest neighbor data structures.

  3. If it is given that the red points are separated in x from the blue points, then you may be able to adapt the O(n) merge step of the Shamos–Hoey divide-and-conquer algorithm for the closest (monochromatic) pair problem, described here.

这篇关于两点之间的最近距离(不相交集)的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-06 05:57