问题描述
我们正在使用公共数据集对BigQuery进行基准测试.我们将同一张桌子划分为一天,但尚不清楚我们会获得很多好处.好的平衡是什么?
We are using a public dataset to benchmark BigQuery. We took the same table and partitioned it by day, but it's not clear we are getting many benefits. What's a good balance?
SELECT sum(score)
FROM `fh-bigquery.stackoverflow_archive.201906_posts_questions`
WHERE creation_date > "2019-01-01"
耗时1秒,处理270.7MB.
Takes 1 second, and processes 270.7MB.
相同,但带有分区:
SELECT sum(score)
FROM `temp.questions_partitioned`
WHERE creation_date > "2019-01-01"
耗时2秒,处理14.3 MB.
Takes 2 seconds and processes 14.3 MB.
因此,我们发现在处理的MB中有好处,但查询速度较慢.
So we see a benefit in MBs processed, but the query is slower.
决定何时进行分区的好策略是什么?
What's a good strategy to decide when to partition?
(从我今天收到的电子邮件中)
(from an email I received today)
推荐答案
对表进行分区时,您需要考虑为每个分区有足够的数据.将每个分区都视为一个不同的文件-打开365个文件可能比拥有一个大文件要慢.
When partitioning a table, you need to consider having enough data for each partition. Think of each partition like being a different file - and opening 365 files might be slower than having a huge one.
在这种情况下,用于基准测试的表具有2019年1.6 GB的数据(直到本月的6月).每天每个分区有1.6GB/180 = 9 MB的数据.
In this case, the table used for the benchmark has 1.6 GB of data for 2019 (until June in this one). That's 1.6GB/180 = 9 MB of data for each daily partition.
对于如此低的数据量-将其安排在每日分区中不会带来太多好处.考虑改为按年份对数据进行分区.请参阅以下问题以了解操作方法:
For such a low amount of data - arranging it in daily partitions won't bring much benefits. Consider partitioning the data by year instead. See the following question to learn how:
另一种选择是根本不对表进行分区,而是使用聚类按日期对数据进行排序.然后BigQuery可以选择每个块的理想大小.
Another alternative is not partitioning the table at all, and instead using clustering to sort the data by date. Then BigQuery can choose the ideal size of each block.
如果您要运行自己的基准测试,请执行以下操作:
If you want to run your own benchmarks, do this:
CREATE TABLE `temp.questions_partitioned`
PARTITION BY DATE(creation_date)
AS
SELECT *
FROM `fh-bigquery.stackoverflow_archive.201906_posts_questions`
没有分区,只是按日期聚类:
vs no partitions, just clustering by date:
CREATE TABLE `temp.questions_clustered`
PARTITION BY fake_date
CLUSTER BY creation_date
AS
SELECT *, DATE('2000-01-01') fake_date
FROM `fh-bigquery.stackoverflow_archive.201906_posts_questions`
然后我对集群表的查询将是:
Then my query over the clustered table would be:
SELECT sum(score)
FROM `temp.questions_clustered`
WHERE creation_date > "2019-01-01"
花了0.5秒,处理了17 MB.
And it took 0.5 seconds, 17 MB processed.
已比较:
- 原始表:1秒,270.7MB
- 分区:2秒,14.3 MB
- 集群:0.5秒,17 MB
我们有一个赢家!群集将每日数据(对于此表来说不算多)将其组织成比按日严格划分数据更为有效的块.
We have a winner! Clustering organized the daily data (which isn't much for this table) into more efficient blocks than strictly partitioning it by day.
看看这些表上每个查询的执行细节也很有趣:
It's also interesting to look at the execution details for each query on these tables:
已消耗的插槽时间
- 原始表:10.683秒
- 分区:7.308秒
- 集群:0.718秒
如您所见,对原始表的查询使用了大量的插槽(并行度)以在1秒内获得结果.在这种情况下,有50名工人用多年的数据处理了整个表,读取了1770万行.分区表上的查询必须使用很多插槽-但这是因为每个插槽都分配了较小的每日分区,该读取使用了超过0.9M行的153个并行工作器.相反,集群查询能够使用非常少量的插槽.数据井井有条,可以由57个并行的工作人员读取,读取112万行.
As you can see, the query over raw table used a lot of slots (parallelism) to get the results in 1 second. In this case 50 workers processed the whole table with multiple years of data, reading 17.7M rows. The query over the partitioned table had to use a lot of slots - but this because each slot was assigned smallish daily partitions, a reading that used 153 parallel workers over 0.9M rows. The clustered query instead was able to use a very low amount of slots. Data was well organized to be read by 57 parallel workers, reading 1.12M rows.
另请参阅:
- https://medium.com/google-cloud/bigquery-optimized-cluster-your-tables-65e2f684594b
- 如何改善使用分区+集群表查询的数据量?
- 集群在BigQuery中的工作方式
- https://medium.com/google-cloud/bigquery-optimized-cluster-your-tables-65e2f684594b
- How can I improve the amount of data queried with a partitioned+clustered table?
- how clustering works in BigQuery
这篇关于确定何时在BigQuery中对表进行分区的最佳平衡是什么?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!