本文介绍了在Datalab中查询Hive表时出现问题的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我已经创建了一个具有更新的init操作的dataproc集群,以安装datalab.
I have create a dataproc cluster with an updated init action to install datalab.
一切正常,除了当我从Datalab笔记本查询Hive表时,我遇到了
All works fine, except that when I query a Hive table from the Datalab notebook, i run into
hc.sql("""select * from invoices limit 10""")
"java.lang.ClassNotFoundException: Class com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem not found" exception
创建集群
gcloud beta dataproc clusters create ds-cluster \
--project my-exercise-project \
--region us-west1 \
--zone us-west1-b \
--bucket dataproc-datalab \
--scopes cloud-platform \
--num-workers 2 \
--enable-component-gateway \
--initialization-actions gs://dataproc_mybucket/datalab-updated.sh,gs://dataproc-initialization-actions/connectors/connectors.sh \
--metadata 'CONDA_PACKAGES="python==3.5"' \
--metadata gcs-connector-version=1.9.11
datalab-updated.sh
-v "${DATALAB_DIR}:/content/datalab" ${VOLUME_FLAGS} datalab-pyspark; then
mkdir -p ${HOME}/datalab
gcloud source repos clone datalab-notebooks ${HOME}/datalab/notebooks
在datalab笔记本中
from pyspark.sql import HiveContext
hc=HiveContext(sc)
hc.sql("""show tables in default""").show()
hc.sql("""CREATE EXTERNAL TABLE IF NOT EXISTS INVOICES
(SubmissionDate DATE, TransactionAmount DOUBLE, TransactionType STRING)
STORED AS PARQUET
LOCATION 'gs://my-exercise-project-ds-team/datasets/invoices’""")
hc.sql("""select * from invoices limit 10""")
更新
spark._jsc.hadoopConfiguration().set('fs.gs.impl', 'com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem')
spark._jsc.hadoopConfiguration().set('fs.gs.auth.service.account.enable', 'true')
spark._jsc.hadoopConfiguration().set('google.cloud.auth.service.account.json.keyfile', "~/Downloads/my-exercise-project-f47054fc6fd8.json")
更新2(datalab-updated.sh)
function run_datalab(){
if docker run -d --restart always --net=host \
-v "${DATALAB_DIR}:/content/datalab" ${VOLUME_FLAGS} datalab-pyspark; then
mkdir -p ${HOME}/datalab
gcloud source repos clone datalab-notebooks ${HOME}/datalab/notebooks
echo 'Cloud Datalab Jupyter server successfully deployed.'
else
err 'Failed to run Cloud Datalab'
fi
}
推荐答案
您应使用 Datalab初始化操作,用于在Dataproc集群上安装Datalab:
You should use Datalab initialization action to install Datalab on Dataproc cluster:
gcloud dataproc clusters create ${CLUSTER} \
--image-version=1.3 \
--scopes cloud-platform \
--initialization-actions=gs://dataproc-initialization-actions/datalab/datalab.sh
此配置单元在Datalab中与GCS一起使用后即可使用
After this Hive works with GCS out of the box in Datalab:
from pyspark.sql import HiveContext
hc=HiveContext(sc)
hc.sql("""SHOW TABLES IN default""").show()
输出:
+--------+---------+-----------+
|database|tableName|isTemporary|
+--------+---------+-----------+
+--------+---------+-----------+
在Datalab中使用Hive在GCS上创建外部表:
Creating external table on GCS using Hive in Datalab:
hc.sql("""CREATE EXTERNAL TABLE IF NOT EXISTS INVOICES
(SubmissionDate DATE, TransactionAmount DOUBLE, TransactionType STRING)
STORED AS PARQUET
LOCATION 'gs://<BUCKET>/datasets/invoices'""")
输出:
DataFrame[]
在Datalab中使用Hive查询GCS表:
Querying GCS table using Hive in Datalab:
hc.sql("""SELECT * FROM invoices LIMIT 10""")
输出:
DataFrame[SubmissionDate: date, TransactionAmount: double, TransactionType: string]
这篇关于在Datalab中查询Hive表时出现问题的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!