问题描述
我可以在Cloud Datalab中导入tensorflow并运行模型,但是如何将其配置为使用GPU?
这里的文档只涉及机器,我不知道如何通过Datalab进行配置:
我试过这个:
p> datalab create --machine-type standard_gpu ml
,当我选择us-east1区域时,出现错误:
创建实例ml
错误:(gcloud.compute.instances.create)某些请求未成功:
- 字段'resource.machineType'的值无效:'https://www.googleapis.com/计算/ V1 /项目/工程-160204 /区/ US-east1-d / machineTypes / standard_gpu。名称为'standard_gpu'的机器类型不存在于区域'us-east1-d'中。
您链接到的页面()描述了如何在使用Google Cloud ML Engine API进行培训时使用GPU,并且您可以使用Datalab针对ML Engine API提交作业。一些样本包含在Datalab中(例如样本/ ML工具箱/图像分类/花卉/服务结束到End.ipynb)
如果您想训练一个Tensorflow模型在Datalab虚拟机上进行本地化,那么Datalab将不得不针对当前不支持的Datalab虚拟机上的GPU运行。
I can import tensorflow and run models inside of Cloud Datalab, but how do I configure it to use GPUs?
The documentation here only talks about machines, which I'm not sure how to configure through Datalab:https://cloud.google.com/ml-engine/docs/how-tos/using-gpus
I've tried this:
datalab create --machine-type standard_gpu ml
and when I select the us-east1 region, I get the error:
Creating the instance ml
ERROR: (gcloud.compute.instances.create) Some requests did not succeed:
- Invalid value for field 'resource.machineType': 'https://www.googleapis.com/compute/v1/projects/project-160204/zones/us-east1-d/machineTypes/standard_gpu'. Machine type with name 'standard_gpu' does not exist in zone 'us-east1-d'.
The page you link to (https://cloud.google.com/ml-engine/docs/how-tos/using-gpus) does describe how to use GPUs when training using the Google Cloud ML Engine API, and you can submit a job against the ML Engine API using Datalab. Some samples of that are included in Datalab (e.g. samples/ML Toolbox/Image Classification/Flower/Service End to End.ipynb)
If you want to train a Tensorflow model locally on the Datalab VM, then Datalab would have to be running against a GPU on the Datalab VM, which is not currently supported.
这篇关于如何配置Google Cloud Datalab以将GPU用于TensorFlow?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!