本文介绍了Python pandas_udf火花错误的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我开始在本地玩火花,发现这个奇怪的问题
I started playing around with spark locally and finding this weird issue
1) pip install pyspark==2.3.1
2) pyspark>
import pandas as pd
from pyspark.sql.functions import pandas_udf, PandasUDFType, udf
df = pd.DataFrame({'x': [1,2,3], 'y':[1.0,2.0,3.0]})
sp_df = spark.createDataFrame(df)
@pandas_udf('long', PandasUDFType.SCALAR)
def pandas_plus_one(v):
return v + 1
sp_df.withColumn('v2', pandas_plus_one(sp_df.x)).show()
从此处获取此示例 https://databricks.com/blog/2017/10/30/introducing-vectorized-udfs-for-pyspark.html
知道为什么我会不断收到此错误吗?
Any idea why I keep getting this error?
py4j.protocol.Py4JJavaError: An error occurred while calling o108.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 3.0 failed 1 times, most recent failure: Lost task 0.0 in stage 3.0 (TID 8, localhost, executor driver): org.apache.spark.SparkException: Python worker exited unexpectedly (crashed)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:333)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator$$anonfun$1.applyOrElse(PythonRunner.scala:322)
at scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:177)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:121)
at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at org.apache.spark.sql.execution.python.ArrowEvalPythonExec$$anon$2.(ArrowEvalPythonExec.scala:90)
at org.apache.spark.sql.execution.python.ArrowEvalPythonExec.evaluate(ArrowEvalPythonExec.scala:88)
at org.apache.spark.sql.execution.python.EvalPythonExec$$anonfun$doExecute$1.apply(EvalPythonExec.scala:131)
at org.apache.spark.sql.execution.python.EvalPythonExec$$anonfun$doExecute$1.apply(EvalPythonExec.scala:93)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:800)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$23.apply(RDD.scala:800)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:324)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:288)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
at org.apache.spark.scheduler.Task.run(Task.scala:109)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.io.EOFException
at java.io.DataInputStream.readInt(DataInputStream.java:392)
at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:158)
... 27 more
推荐答案
我遇到了同样的问题.我发现这是熊猫和numpy之间的版本问题.
I had the same problem. I found it to be a version problem between pandas and numpy.
对我来说,以下作品:
numpy==1.14.5
pandas==0.23.4
pyarrow==0.10.0
在我使用以下无效组合之前:
before I had the following non working combination:
numpy==1.15.1
pandas==0.23.4
pyarrow==0.10.0
这篇关于Python pandas_udf火花错误的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!