本文介绍了dplyr:case_when,涉及许多案例的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有两个数据框:
set.seed(002)
data1 <- data.frame(cbind(
a1 = sample(letters, 8, replace = TRUE),
a2 = rpois(8, 10)
), stringsAsFactors = FALSE)
data2 <- data.frame(cbind(
b1 = paste("area", 1:6, sep = " "),
b2 = c("e", "s", "o", "y", "d", "v")
), stringsAsFactors = FALSE)
data1
a1 a2
1 e 9
2 s 10
3 o 12
4 e 9
5 y 16
6 y 9
7 d 11
8 v 13
data2
b1 b2
1 area 1 e
2 area 2 s
3 area 3 o
4 area 4 y
5 area 5 d
6 area 6 v
我想在data1中创建一个称为a3的新列,同时将a1与data2中的信息进行匹配,例如,如果a1 ="e",则a3 =区域1",如果a1 ="d",则a3 =区域5",并且很快.新的data1应该看起来像这样:
I want to create a new column in data1 called a3 while matching a1 with information from data2 e.g if a1 = "e" then a3 = "area 1", if a1 = "d" then a3 = "area 5" and so on. The new data1 should look like this:
a1 a2 a3
1 e 9 area 1
2 s 10 area 2
3 o 12 area 3
4 e 9 area 1
5 y 16 area 4
6 y 9 area 4
7 d 11 area 5
8 v 13 area 6
我可以做到这一点
data1 %>%
mutate(a3 = case_when(
a1 == "e" ~ "area 1",
a1 == "s" ~ "area 2",
a1 == "o" ~ "area 3",
a1 == "y" ~ "area 4",
a1 == "d" ~ "area 5",
TRUE ~ "area 6"
))
问题是我有很多情况,我将在许多不同情况下的数据帧上重复此操作.
The problem is that I have many cases and I am to repeat this on a number of data frames with different cases.
我可以通过写以r为基
data1$a3 <- NA
for(i in 1:nrow(data2)){
for(j in 1:nrow(data1)){
if(data1[j,1] == data2[i,2]){
data1[j,3] <- data2[i,1]
}
}
}
但是我很喜欢dplyr.感谢您提供有关使用dplyr实现此目标的任何帮助.
but I am a fun of dplyr. Any assistance on how to achieve this using dplyr is appreciated.
推荐答案
data1 <- dplyr::left_join(data1, data2, by = c("a1" = "b2"))
data1:-
a1 a2 b1
e 9 area 1
s 10 area 2
o 12 area 3
e 9 area 1
y 16 area 4
y 9 area 4
d 11 area 5
v 13 area 6
这篇关于dplyr:case_when,涉及许多案例的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!