本文介绍了什么是固定大小的HashMap的最佳容量和负载因子?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我试图找出特定情况下的最佳容量和负载因数。我想我已经掌握了它的要点,但是我仍然要感谢那些比我更有知识的人的确认。 :)如果我知道我的HashMap将满足包含100个对象,并且大部分时间都会有100个对象,那么我猜测最佳值是初始容量100和负载因数1?或者我需要容量101,还是有任何其他的陷阱?编辑:好吧,我搁置了几个小时,做了一些测试。结果如下:




  • 奇怪的是,容量,容量+1,容量+2,容量-1甚至容量-10都准确相同的结果。我预计至少容量1和容量10的结果会更差。

  • 使用初始容量(而不是使用默认值16)可以提供显着的put()改进 - 高达
  • 使用1的加载因子可以为少量对象提供相同的性能,并且对于大量对象(> 100000)可以获得更好的性能。但是,这并不能与对象的数量成比例地提高;我怀疑还有其他因素会影响结果。
  • 对于不同数量的对象/容量,
  • get()性能有点不同,但是尽管它可能会略有不同,但通常它不受初始容量或负载因素的影响。



编辑2:在我的部分也添加一些图表。下面是一个说明负载因子0.75和1之间的区别,在我初始化HashMap并填充满容量的情况下。在y尺度上,时间以毫秒为单位(越低越好),x尺度是尺寸(对象数量)。由于尺寸线性变化,所需时间也呈线性增长。



所以,让我们看看我得到了什么。以下两个图表显示了负载系数的差异。第一个图表显示了当HashMap被填充到容量时会发生什么;负载因子0.75由于调整大小而变差。然而,这并不总是更糟糕,并且有各种各样的颠簸和跳跃 - 我想GC在这方面有一个重要的发挥。负载系数1.25与1相同,因此它不包含在图表中。





这张图表证明由于调整大小,0.75变得更糟;如果我们将HashMap填充到容量的一半,则0.75不会变差,只是...不同(并且它应该使用更少的内存,并且具有不可思议的更好的迭代性能)。 img src =https://i.stack.imgur.com/UmPGa.jpgalt =half full>

我想展示的还有一件事。这是获得所有三个加载因子和不同HashMap大小的性能。我一直想知道那是什么(可能是GC,但是谁知道)。





以下是对这些感兴趣的代码:

  import java.util.HashMap; 
import java.util.Map;

public class HashMapTest {

//容量 - 数字最大为10000000 require -mx1536m -ms1536m JVM参数
public static final int CAPACITY = 10000000;
public static final int ITERATIONS = 10000;

//设置为false来打印put性能,或者为true来打印获得性能
boolean doIterations = false;

私人地图< Integer,String>缓存;

public void fillCache(int capacity){
long t = System.currentTimeMillis();
for(int i = 0; i cache.put(i,Value number+ i);

if(!doIterations){
System.out.print(System.currentTimeMillis() - t);
System.out.print(\t);


$ b $ public void iterate(int capacity){
long t = System.currentTimeMillis();

for(int i = 0; i long x = Math.round(Math.random()* capacity);
String result = cache.get((int)x);
}

if(doIterations){
System.out.print(System.currentTimeMillis() - t);
System.out.print(\t);



public void test(float loadFactor,int divider){
for(int i = 10000; i cache = new HashMap< Integer,String>(i,loadFactor);
fillCache(i / divider);
if(doIterations)
iterate(i / divider);
}
System.out.println();


public static void main(String [] args){
HashMapTest test = new HashMapTest();

//填入容量
test.test(0.75f,1);
test.test(1,1);
test.test(1.25f,1);

//填充到一半容量
test.test(0.75f,2);
test.test(1,2);
test.test(1.25f,2);
}

}


解决方案

好吧,为了让这个东西得到休息,我创建了一个测试应用程序来运行几个场景并获得结果的可视化。以下是测试完成的方式:


  • 已经尝试了许多不同的集合尺寸:一百一十万和十万个条目。

  • 使用的键是由ID唯一标识的类的实例。每个测试使用唯一键,并将整数作为ID递增。 等于方法只使用ID,所以没有键映射覆盖另一个。

  • 这些密钥会得到一个哈希码,其中包含其ID对应某个预设编号的剩余部分。我们会将该数字称为散列限制。这使我能够控制预期的散列冲突数量。例如,如果我们的集合大小为100,那么我们将拥有ID为0到99的密钥。如果哈希限制为100,则每个密钥都将具有唯一的哈希码。如果散列限制为50,则密钥0将具有与密钥50相同的散列代码,1将具有与51等相同的散列代码。换句话说,每个密钥的散列冲突的预期数目是集合大小除以散列限制。

  • 对于集合大小和散列限制的每个组合,我使用初始化为不同设置的哈希映射运行测试。这些设置是加载因子,以及表示为收集设置因子的初始容量。例如,集合大小为100且初始容量因子为1.25的测试将初始化初始容量为125的哈希映射。
  • 每个键的值仅仅是一个新的 Object

  • 每个测试结果都封装在Result类的一个实例中。在所有测试结束时,结果从最差的整体表现中排序到最好。

  • 投入和获取的平均时间是每10次计算得出的。

  • 所有测试组合都运行一次以消除JIT编译影响。在这之后,这些测试是针对实际结果运行的。



以下是课程:

  package hashmaptest; 

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

public class HashMapTest {

private static final List< Result> results = new ArrayList< Result>();

public static void main(String [] args)throws IOException {

//每个数组的第一个条目是样本集大小,后续条目
//是散列限制
final int [] [] sampleSizesAndHashLimits = new int [] [] {
{100,50,90,100},
{1000,500,900,990, 1000},
{100000,10000,90000,99000,100000}
};
final double [] initialCapacityFactors = new double [] {0.5,0.75,1.0,1.25,1.5,2.0};
final float [] loadFactors = new float [] {0.5f,0.75f,1.0f,1.25f};

//执行热身运行以消除JIT影响
for(int [] sizeAndLimits:sa​​mpleSizesAndHashLimits){
int size = sizeAndLimits [0];
for(int i = 1; i< sizeAndLimits.length; ++ i){
int limit = sizeAndLimits [i];
for(double initCapacityFactor:initialCapacityFactors){
for(float loadFactor:loadFactors){
runTest(limit,size,initCapacityFactor,loadFactor);
}
}
}

}

results.clear();

//现在是真实的...
for(int [] sizeAndLimits:sa​​mpleSizesAndHashLimits){
int size = sizeAndLimits [0];
for(int i = 1; i< sizeAndLimits.length; ++ i){
int limit = sizeAndLimits [i];
for(double initCapacityFactor:initialCapacityFactors){
for(float loadFactor:loadFactors){
runTest(limit,size,initCapacityFactor,loadFactor);
}
}
}

}

Collections.sort(results);

for(final result result:results){
result.printSummary();
}

// ResultVisualizer.visualizeResults(results);


$ b $ private static void runTest(final int hashLimit,final int sampleSize,
final double initCapacityFactor,final float loadFactor){

final int initialCapacity =(int)(sampleSize * initCapacityFactor);

System.out.println(运行测试样本集合的大小+ sampleSize
+,初始容量为+ initialCapacity +,加载因子为
+ loadFactor +以及散列码限于+ hashLimit的键;
System.out.println(====================);

double hashOverload =(((double)sampleSize / hashLimit) - 1.0)* 100.0;

System.out.println(哈希代码重载:+ hashOverload +%);

//生成我们的样本密钥集合。
最终列表< Key> keys = generateSamples(hashLimit,sampleSize);

//生成我们的值集合
final List< Object> values = generateValues(sampleSize);

final HashMap< Key,Object> map = new HashMap< Key,Object>(initialCapacity,loadFactor);

最终长度startPut = System.nanoTime(); (int i = 0; i< sampleSize; ++ i){
map.put(keys.get(i),values.get(i))的

;
}

final long endPut = System.nanoTime();

最后一次putTime = endPut - startPut;
final long averagePutTime = putTime /(sampleSize / 10);

System.out.println(将所有键映射到它们的值的时间:+ putTime +ns);
System.out.println(每10个条目的平均放置时间:+ averagePutTime +ns);

final long startGet = System.nanoTime(); (int i = 0; i< sampleSize; ++ i){
map.get(keys.get(i));


}

final long endGet = System.nanoTime();

final long getTime = endGet - startGet;
final long averageGetTime = getTime /(sampleSize / 10);

System.out.println(获取每个键值的时间:+ getTime +ns);
System.out.println(每10个条目的平均获取时间:+ averageGetTime +ns);

System.out.println();
$ b $ final结果结果=
新结果(sampleSize,initialCapacity,loadFactor,hashOverload,averagePutTime,averageGetTime,hashLimit);

results.add(result);

//哈哈,什么样的noob显式调用垃圾回收?
System.gc();

尝试{
Thread.sleep(200);
} catch(final InterruptedException e){}

}

private static List< Key> generateSamples(final int hashLimit,final int sampleSize){

final ArrayList< Key> result = new ArrayList< Key>(sampleSize);

for(int i = 0; i< sampleSize; ++ i){
result.add(new Key(i,hashLimit));
}

返回结果;

}

private static List< Object> generateValues(final int sampleSize){

final ArrayList< Object> result = new ArrayList< Object>(sampleSize);

for(int i = 0; i< sampleSize; ++ i){
result.add(new Object());
}

返回结果;

}

private static class Key {

private final int hashCode;
private final int id;

Key(final int id,final int hashLimit){

//如果limit是相同的,则相等意味着相同的hashCode
//相同的hashCode不一定意味着等于

this.id = id;
this.hashCode = id%hashLimit;



@Override
public int hashCode(){
return hashCode;

$ b @Override
public boolean equals(final Object o){
return((Key)o).id == this.id;
}

}

static class Result implements Comparable< Result> {

final int sampleSize;
final int initialCapacity;
final float loadFactor;
final double hashOverloadPercentage;
最终长期averagePutTime;
最终平均收益时间;
final int hashLimit;

结果(final int sampleSize,final int initialCapacity,final float loadFactor,
final double hashOverloadPercentage,final long averagePutTime,
final long averageGetTime,final int hashLimit){

this.sampleSize = sampleSize;
this.initialCapacity = initialCapacity;
this.loadFactor = loadFactor;
this.hashOverloadPercentage = hashOverloadPercentage;
this.averagePutTime = averagePutTime;
this.averageGetTime = averageGetTime;
this.hashLimit = hashLimit;



@Override
public int compareTo(final Result o){

final long putDiff = o.averagePutTime - this。 averagePutTime;
final long getDiff = o.averageGetTime - this.averageGetTime;

return(int)(putDiff + getDiff);

$ b $ void printSummary(){

System.out.println(+ averagePutTime +ns per 10 puts,
+ averageGetTime +对于+ sampleSize +映射和+ hashOverloadPercentage
+,加载因子为
+ loadFactor +,初始容量为+ initialCapacity
+ 哈希码过载%。);

}

}

}

运行这可能需要一段时间。结果打印在标准输出。你可能会注意到我已经注释掉了一行。该行调用一个可视化器,将结果的可视化表示输出到png文件。下面给出了这个类。如果你想运行它,取消上面代码中的相应行。被警告:可视化工具类假设你在Windows上运行,并将在C:\temp中创建文件夹和文件。在另一个平台上运行时,请调整它。

  package hashmaptest; 

导入hashmaptest.HashMapTest.Result;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import javax.imageio.ImageIO;

public class ResultVisualizer {

private static final Map< Integer,Map< Integer,Set< Result>>> sampleSizeToHashLimit =
new HashMap< Integer,Map< Integer,Set< Result>>>();

private static final DecimalFormat df = new DecimalFormat(0.00);

static void visualizeResults(final List< Result> results)throws IOException {

final File tempFolder = new File(C:\\temp);
final文件baseFolder = makeFolder(tempFolder,hashmap_tests);

long bestPutTime = -1L;
long worstPutTime = 0L;
long bestGetTime = -1L;
long worstGetTime = 0L;

for(final result result:results){

final整数sampleSize = result.sampleSize;
final Integer hashLimit = result.hashLimit;
final long putTime = result.averagePutTime;
final long getTime = result.averageGetTime;

if(bestPutTime == -1L || putTime< bestPutTime)
bestPutTime = putTime;
if(bestGetTime bestGetTime = getTime;

if(putTime> worstPutTime)
worstPutTime = putTime;
if(getTime> worstGetTime)
worstGetTime = getTime;

Map< Integer,Set&Result;>> hashLimitToResults =
sampleSizeToHashLimit.get(sampleSize);
if(hashLimitToResults == null){
hashLimitToResults = new HashMap< Integer,Set< Result>>();
sampleSizeToHashLimit.put(sampleSize,hashLimitToResults);
}
Set< Result> resultSet = hashLimitToResults.get(hashLimit);
if(resultSet == null){
resultSet = new HashSet< Result>();
hashLimitToResults.put(hashLimit,resultSet);
}
resultSet.add(result);


$ b System.out.println(Best average put time:+ bestPutTime +ns);
System.out.println(Best average get time:+ bestGetTime +ns);
System.out.println(最差平均放置时间:+ worstPutTime +ns);
System.out.println(最差平均获得时间:+ worstGetTime +ns); (最终整数sampleSize:sampleSizeToHashLimit.keySet()){

最终文件sizeFolder = makeFolder(baseFolder,sample_size_+ sampleSize);

最终地图< Integer,Set< Result>> hashLimitToResults =
sampleSizeToHashLimit.get(sampleSize);

for(final Integer hashLimit:hashLimitToResults.keySet()){

final File limitFolder = makeFolder(sizeFolder,hash_limit_+ hashLimit);

final Set< Result> resultSet = hashLimitToResults.get(hashLimit);

final Set< Float> loadFactorSet = new HashSet< Float>();
final Set< Integer> initialCapacitySet = new HashSet< Integer>();

for(final result result:resultSet){
loadFactorSet.add(result.loadFactor);
initialCapacitySet.add(result.initialCapacity);
}

最终列表< Float> loadFactors = new ArrayList< Float>(loadFactorSet);
最终列表<整数> initialCapacities = new ArrayList< Integer>(initialCapacitySet);

Collections.sort(loadFactors);
Collections.sort(initialCapacities);

final BufferedImage putImage =
renderMap(resultSet,loadFactors,initialCapacities,worstPutTime,bestPutTime,false);
final BufferedImage getImage =
renderMap(resultSet,loadFactors,initialCapacities,worstGetTime,bestGetTime,true);

final String putFileName =size_+ sampleSize +_hlimit_+ hashLimit +_puts.png;
final String getFileName =size_+ sampleSize +_hlimit_+ hashLimit +_gets.png;

writeImage(putImage,limitFolder,putFileName);
writeImage(getImage,limitFolder,getFileName);







private static File makeFolder(final File parent,final String folder)throws IOException {

final File child = new File(parent,folder);

if(!child.exists())
child.mkdir();

归还子女;


$ b private static BufferedImage renderMap(final Set< Result> results,final List< Float> loadFactors,
final List< Integer> initialCapacities,final float worst ,final float best,
final boolean get){

// [x] [y] => x被映射到初始容量,y被映射到加载因子
final Color [] [] map = new Color [initialCapacities.size()] [loadFactors.size()];

for(final result result:results){
final int x = initialCapacities.indexOf(result.initialCapacity);
final int y = loadFactors.indexOf(result.loadFactor);
final float time = get? result.averageGetTime:result.averagePutTime;
final float分数=(时间 - 最佳)/(最差 - 最好);
final颜色c =新颜色(分数,1.0f - 分数,0.0f);
map [x] [y] = c;
}

final int imageWidth = initialCapacities.size()* 40 + 50;
final int imageHeight = loadFactors.size()* 40 + 50;

final BufferedImage image =
new BufferedImage(imageWidth,imageHeight,BufferedImage.TYPE_3BYTE_BGR);

final Graphics2D g = image.createGraphics();

g.setColor(Color.WHITE);
g.fillRect(0,0,imageWidth,imageHeight); (int x = 0; x
for(int y = 0; y
。长度; ++ y){

g.setColor(map [x] [y]);
g.fillRect(50 + x * 40,imageHeight - 50 - (y + 1)* 40,40,40);

g.setColor(Color.BLACK);
g.drawLine(25,imageHeight - 50 - (y + 1)* 40,50,imageHeight - 50 - (y + 1)* 40);

final Float loadFactor = loadFactors.get(y);
g.drawString(df.format(loadFactor),10,imageHeight - 65 - (y)* 40);

}

g.setColor(Color.BLACK);
g.drawLine(50 +(x + 1)* 40,imageHeight - 50,50 +(x + 1)* 40,imageHeight - 15);

final int initialCapacity = initialCapacities.get(x);
g.drawString(((initialCapacity%1000 == 0)?+(initialCapacity / 1000)+K:+ initialCapacity),15 +(x + 1)* 40,imageHeight - 25 );
}

g.drawLine(25,imageHeight - 50,imageWidth,imageHeight - 50);
g.drawLine(50,0,50,imageHeight - 25);

g.dispose();

return image;



private static void writeImage(final BufferedImage image,final File folder,
final String filename)throws IOException {

final文件imageFile =新文件(文件夹,文件名);

ImageIO.write(image,png,imageFile);

}

}

可视化输出如下所示:


  • 测试首先按集合大小划分,然后按散列限制划分。

  • 对于每个测试,都会有一个关于平均投入时间(每10次投入)和平均获得时间(每10次获得)的输出图像。这些图像是二维热图,显示每种初始容量和加载因子的组合。图像中的颜色是基于标准化尺度上的平均时间从饱和的绿色到饱和的红色,从最好到最差的结果。换句话说,最好的时间将是完全绿色的,而最糟糕的时间将是完全红色的。两种不同的时间测量不应该具有相同的颜色。

  • 颜色贴图分别针对puts和gets进行计算,但涵盖了各个类别的所有测试。
  • 可视化显示其x轴上的初始容量,以及y轴上的负载系数。



毫不费力,让我们看看结果。我将从结果中看出看法。



结果




集合大小:100.哈希值限制:50.这意味着每个哈希代码应该出现两次,并且每个其他键都在哈希映射中发生冲突。





那么,起步非常好。我们看到有一个大热点,初始容量比集合大小高25%,负载系数为1.左下角表现不佳。




集合大小:100.哈希值限制:90.十个密钥中有一个具有重复的哈希代码。



这是一个稍微更现实的场景,没有完美的哈希函数,但仍有10%过载。热点消失了,但低初始能力和低负荷因素的组合显然不起作用。




收藏大小:100.哈希值限制:100.每个密钥都是自己唯一的哈希码。如果有足够的桶,则不会发生冲突。

>



初始容量为100,负载因数为1似乎很好。令人惊讶的是,具有较低负载因子的较高初始容量并不一定好。




收集大小:1000.哈希极限:500.这里越来越严重,有1000个参赛作品。就像在第一个测试中一样,有一个2到1的哈希超载。





左下角仍然不太好。但似乎在较低初始计数/高负荷系数和较高初始计数/较低负荷系数的组合之间存在对称性。




集合大小:1000.哈希限制:900.这意味着十分之一的哈希代码将发生两次。合理的碰撞情况。





有一些非常有趣的事情发生在初始容量不太可能组合的情况下,当容量负载因子高于1时,容量太低,这相当反直觉。




收藏大小:1000.哈希极限:990。有些碰撞,但只有少数碰撞。在这方面非常现实。



p>

我们在这里有一个很好的对称性。左下角仍然不是最佳状态,但组合1000初始容量/1.0负载系数与1250初始容量/ 0.75负载系数是相同的。




集合大小:1000.哈希限制:1000.没有重复的哈希代码,但现在样本大小为1000.



这里没什么好说的。较高的初始容量与0.75的负载系数的组合似乎略优于1000个初始容量与1的负载系数的组合。




收藏大小:100_000。哈希限制:10_000。好吧,现在情况变得严重了,每个密钥的样本量为10万个和100个哈希码重复。
$ b



Yikes!我认为我们找到了我们较低的频谱。一个负载因子为1的集合大小的初始容量在这里表现非常出色,但除此之外它已经遍布整个商店。






收藏大小:100_000。哈希限制:90_000。比以前的测试更现实一些,这里我们有10%的哈希码过载。



左下角仍然不合需要。较高的初始能力效果最好。




收藏大小:100_000。哈希限制:99_000。好的场景,这个。一个哈希码超载1%的大集合。



使用具有1个加载因子的init容量的确切集合大小在此胜出!不过,稍微大一点的初始化能力工作得很好。






收藏大小:100_000。哈希限制:100_000。大的那个。具有完美散列函数的最大集合。



这里有一些令人惊讶的东西。初始容量为50%额外空间,负载系数为1胜。




好的,这就是投注。现在,我们将检查获取。请记住,下面的地图都是相对于最佳/最差的获得时间,投放时间不再考虑在内。 $ b

获得结果




收集大小:100.哈希值限制:50.这意味着每个哈希码应该出现两次,碰撞在散列图中。



p>

呃...什么?




收藏大小:100。哈希限制:90.十个密钥中有一个具有重复的哈希码。





Whoa Nelly! This is the most likely scenario to correlate with the asker’s question, and apparently an initial capacity of 100 with a load factor of 1 is one of the worst things here! I swear I didn’t fake this.






Collection size: 100. Hash limit: 100. Each key as its own unique hash code. No collisions expected.





This looks a bit more peaceful. Mostly the same results across the board.






Collection size: 1000. Hash limit: 500. Just like in the first test, there’s a hash overload of 2 to 1, but now with a lot more entries.





Looks like any setting will yield a decent result here.






Collection size: 1000. Hash limit: 900. This means one in ten hash codes will occur twice. Reasonable scenario regarding collisions.





And just like with the puts for this setup, we get an anomaly in a strange spot.






Collection size: 1000. Hash limit: 990. Some collisions, but only a few. Quite realistic in this respect.





Decent performance everywhere, save for the combination of a high initial capacity with a low load factor. I’d expect this for the puts, since two hash map resizes might be expected. But why on the gets?






Collection size: 1000. Hash limit: 1000. No duplicate hash codes, but now with a sample size of 1000.





A wholly unspectacular visualization. This seems to work no matter what.






Collection size: 100_000. Hash limit: 10_000. Going into the 100K again, with a whole lot of hash code overlap.





It doesn’t look pretty, although the bad spots are very localized. Performance here seems to depend largely on a certain synergy between settings.






Collection size: 100_000. Hash limit: 90_000. A bit more realistic than the previous test, here we’ve got a 10% overload in hash codes.





Much variance, although if you squint you can see an arrow pointing to the upper right corner.






Collection size: 100_000. Hash limit: 99_000. Good scenario, this. A large collection with a 1% hash code overload.





Very chaotic. It’s hard to find much structure here.






Collection size: 100_000. Hash limit: 100_000. The big one. Largest collection with a perfect hash function.





Anyone else thinks this is starting to look like Atari graphics? This seems to favour an initial capacity of exactly the collection size, -25% or +50%.






Alright, it’s time for conclusions now...




  • Regarding put times: you’ll wish to avoid initial capacities that are lower than the expected number of map entries. If an exact number is known beforehand, that number or something slightly above it seems to work best. High load factors can offset lower initial capacities due to earlier hash map resizes. For higher initial capacities, they don’t seem to matter that much.

  • Regarding get times: results are slightly chaotic here. There’s not much to conclude. It seems to rely very much on subtle ratios between hash code overlap, initial capacity and load factor, with some supposedly bad setups performing well and good setups performing awfully.

  • I’m apparently full of crap when it comes to assumptions about Java performance. The truth is, unless you are perfectly tuning your settings to the implementation of HashMap, the results are going to be all over the place. If there’s one thing to take away from this, it’s that the default initial size of 16 is a bit dumb for anything but the smallest maps, so use a constructor that sets the initial size if you have any sort of idea about what order of size it’s going to be.

  • We’re measuring in nanoseconds here. The best average time per 10 puts was 1179 ns and the worst 5105 ns on my machine. The best average time per 10 gets was 547 ns and the worst 3484 ns. That may be a factor 6 difference, but we’re talking less than a millisecond. On collections that are vastly larger than what the original poster had in mind.



Well, that’s it. I hope my code doesn’t have some horrendous oversight that invalidates everything I’ve posted here. This has been fun, and I’ve learned that in the end you may just as well rely on Java to do its job than to expect much difference from tiny optimizations. That is not to say that some stuff shouldn’t be avoided, but then we’re mostly talking about constructing lengthy Strings in for loops, using the wrong datastructures and making O(n^3) algorithsm.


I'm trying to figure out the optimal capacity and load factor for a specific case. I think I got the gist of it, but I'd still be thankful for a confirmation from someone more knowledgable than me. :)

If I know that my HashMap will fill up to contain, say, 100 objects, and will spend most of the time having 100 objects, I'm guessing that the optimal values are initial capacity 100 and load factor 1? Or do I need capacity 101, or are there any other gotchas?

EDIT: OK, I set aside a few hours and did some testing. Here are the results:

  • Curiously, capacity, capacity+1, capacity+2, capacity-1 and even capacity-10 all yield exactly the same results. I would expect at least capacity-1 and capacity-10 to give worse results.
  • Using initial capacity (as opposed to using default value of 16) gives noticable put() improvement - up to 30% faster.
  • Using load factor of 1 gives equal performance for small number of objects, and better performance for larger number of objects (>100000). However, this does not improve proportionally to the number of objects; I suspect there is additional factor that affects the results.
  • get() performance is a bit different for different number of objects/capacity, but though it might slightly vary from case to case, generally it's not affected by initial capacity or load factor.

EDIT2: Adding some charts on my part as well. Here's the one illustrating difference between load factor 0.75 and 1, in cases where I initialize HashMap and fill it up to full capacity. On y scale is time in ms (lower is better), and x scale is size (number of objects). Since size changes linearly, the time required grows linearly as well.

So, let's see what I got. The following two charts show the difference in load factors. First chart shows what happens when HashMap is filled to capacity; load factor 0.75 performs worse because of resizing. However, it's not consistently worse, and there are all sorts of bumps and hops - I guess that GC has a major play in this. Load factor 1.25 performs the same as 1, so it's not included in the chart.

This chart proves that 0.75 was worse due to resizing; if we fill the HashMap to half capacity, 0.75 is not worse, just... different (and it should use less memory and have unnoticably better iteration performance).

One more thing I want to show. This is get performance for all three load factors and different HashMap sizes. Consistently constant with a little variation, except for one spike for load factor 1. I'd really want to know what that is (probably GC, but who knows).

And here's the code for those interested:

import java.util.HashMap;
import java.util.Map;

public class HashMapTest {

  // capacity - numbers high as 10000000 require -mx1536m -ms1536m JVM parameters
  public static final int CAPACITY = 10000000;
  public static final int ITERATIONS = 10000;

  // set to false to print put performance, or to true to print get performance
  boolean doIterations = false;

  private Map<Integer, String> cache;

  public void fillCache(int capacity) {
    long t = System.currentTimeMillis();
    for (int i = 0; i <= capacity; i++)
      cache.put(i, "Value number " + i);

    if (!doIterations) {
      System.out.print(System.currentTimeMillis() - t);
      System.out.print("\t");
    }
  }

  public void iterate(int capacity) {
    long t = System.currentTimeMillis();

    for (int i = 0; i <= ITERATIONS; i++) {
      long x = Math.round(Math.random() * capacity);
      String result = cache.get((int) x);
    }

    if (doIterations) {
      System.out.print(System.currentTimeMillis() - t);
      System.out.print("\t");
    }
  }

  public void test(float loadFactor, int divider) {
    for (int i = 10000; i <= CAPACITY; i+= 10000) {
      cache = new HashMap<Integer, String>(i, loadFactor);
      fillCache(i / divider);
      if (doIterations)
        iterate(i / divider);
    }
    System.out.println();
  }

  public static void main(String[] args) {
    HashMapTest test = new HashMapTest();

    // fill to capacity
    test.test(0.75f, 1);
    test.test(1, 1);
    test.test(1.25f, 1);

    // fill to half capacity
    test.test(0.75f, 2);
    test.test(1, 2);
    test.test(1.25f, 2);
  }

}
解决方案

Alright, to put this thing to rest, I've created a test app to run a couple of scenarios and get some visualizations of the results. Here's how the tests are done:

  • A number of different collection sizes have been tried: one hundred, one thousand and one hundred thousand entries.
  • The keys used are instances of a class that are uniquely identified by an ID. Each test uses unique keys, with incrementing integers as IDs. The equals method only uses the ID, so no key mapping overwrites another one.
  • The keys get a hash code that consists of the module remainder of their ID against some preset number. We'll call that number the hash limit. This allowed me to control the number of hash collisions that would be expected. For example, if our collection size is 100, we'll have keys with IDs ranging from 0 to 99. If the hash limit is 100, every key will have a unique hash code. If the hash limit is 50, key 0 will have the same hash code as key 50, 1 will have the same hash code as 51 etc. In other words, the expected number of hash collisions per key is the collection size divided by the hash limit.
  • For each combination of collection size and hash limit, I've run the test using hash maps initialized with different settings. These settings are the load factor, and an initial capacity that is expressed as a factor of the collection setting. For example, a test with a collection size of 100 and an initial capacity factor of 1.25 will initialize a hash map with an initial capacity of 125.
  • The value for each key is simply a new Object.
  • Each test result is encapsulated in an instance of a Result class. At the end of all tests, the results are ordered from worst overall performance to best.
  • The average time for puts and gets is calculated per 10 puts/gets.
  • All test combinations are run once to eliminate JIT compilation influence. After that, the tests are run for actual results.

Here's the class:

package hashmaptest;

import java.io.IOException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;

public class HashMapTest {

    private static final List<Result> results = new ArrayList<Result>();

    public static void main(String[] args) throws IOException {

        //First entry of each array is the sample collection size, subsequent entries
        //are the hash limits
        final int[][] sampleSizesAndHashLimits = new int[][] {
            {100, 50, 90, 100},
            {1000, 500, 900, 990, 1000},
            {100000, 10000, 90000, 99000, 100000}
        };
        final double[] initialCapacityFactors = new double[] {0.5, 0.75, 1.0, 1.25, 1.5, 2.0};
        final float[] loadFactors = new float[] {0.5f, 0.75f, 1.0f, 1.25f};

        //Doing a warmup run to eliminate JIT influence
        for(int[] sizeAndLimits : sampleSizesAndHashLimits) {
            int size = sizeAndLimits[0];
            for(int i = 1; i < sizeAndLimits.length; ++i) {
                int limit = sizeAndLimits[i];
                for(double initCapacityFactor : initialCapacityFactors) {
                    for(float loadFactor : loadFactors) {
                        runTest(limit, size, initCapacityFactor, loadFactor);
                    }
                }
            }

        }

        results.clear();

        //Now for the real thing...
        for(int[] sizeAndLimits : sampleSizesAndHashLimits) {
            int size = sizeAndLimits[0];
            for(int i = 1; i < sizeAndLimits.length; ++i) {
                int limit = sizeAndLimits[i];
                for(double initCapacityFactor : initialCapacityFactors) {
                    for(float loadFactor : loadFactors) {
                        runTest(limit, size, initCapacityFactor, loadFactor);
                    }
                }
            }

        }

        Collections.sort(results);

        for(final Result result : results) {
            result.printSummary();
        }

//      ResultVisualizer.visualizeResults(results);

    }

    private static void runTest(final int hashLimit, final int sampleSize,
            final double initCapacityFactor, final float loadFactor) {

        final int initialCapacity = (int)(sampleSize * initCapacityFactor);

        System.out.println("Running test for a sample collection of size " + sampleSize
            + ", an initial capacity of " + initialCapacity + ", a load factor of "
            + loadFactor + " and keys with a hash code limited to " + hashLimit);
        System.out.println("====================");

        double hashOverload = (((double)sampleSize/hashLimit) - 1.0) * 100.0;

        System.out.println("Hash code overload: " + hashOverload + "%");

        //Generating our sample key collection.
        final List<Key> keys = generateSamples(hashLimit, sampleSize);

        //Generating our value collection
        final List<Object> values = generateValues(sampleSize);

        final HashMap<Key, Object> map = new HashMap<Key, Object>(initialCapacity, loadFactor);

        final long startPut = System.nanoTime();

        for(int i = 0; i < sampleSize; ++i) {
            map.put(keys.get(i), values.get(i));
        }

        final long endPut = System.nanoTime();

        final long putTime = endPut - startPut;
        final long averagePutTime = putTime/(sampleSize/10);

        System.out.println("Time to map all keys to their values: " + putTime + " ns");
        System.out.println("Average put time per 10 entries: " + averagePutTime + " ns");

        final long startGet = System.nanoTime();

        for(int i = 0; i < sampleSize; ++i) {
            map.get(keys.get(i));
        }

        final long endGet = System.nanoTime();

        final long getTime = endGet - startGet;
        final long averageGetTime = getTime/(sampleSize/10);

        System.out.println("Time to get the value for every key: " + getTime + " ns");
        System.out.println("Average get time per 10 entries: " + averageGetTime + " ns");

        System.out.println("");

        final Result result =
            new Result(sampleSize, initialCapacity, loadFactor, hashOverload, averagePutTime, averageGetTime, hashLimit);

        results.add(result);

        //Haha, what kind of noob explicitly calls for garbage collection?
        System.gc();

        try {
            Thread.sleep(200);
        } catch(final InterruptedException e) {}

    }

    private static List<Key> generateSamples(final int hashLimit, final int sampleSize) {

        final ArrayList<Key> result = new ArrayList<Key>(sampleSize);

        for(int i = 0; i < sampleSize; ++i) {
            result.add(new Key(i, hashLimit));
        }

        return result;

    }

    private static List<Object> generateValues(final int sampleSize) {

        final ArrayList<Object> result = new ArrayList<Object>(sampleSize);

        for(int i = 0; i < sampleSize; ++i) {
            result.add(new Object());
        }

        return result;

    }

    private static class Key {

        private final int hashCode;
        private final int id;

        Key(final int id, final int hashLimit) {

            //Equals implies same hashCode if limit is the same
            //Same hashCode doesn't necessarily implies equals

            this.id = id;
            this.hashCode = id % hashLimit;

        }

        @Override
        public int hashCode() {
            return hashCode;
        }

        @Override
        public boolean equals(final Object o) {
            return ((Key)o).id == this.id;
        }

    }

    static class Result implements Comparable<Result> {

        final int sampleSize;
        final int initialCapacity;
        final float loadFactor;
        final double hashOverloadPercentage;
        final long averagePutTime;
        final long averageGetTime;
        final int hashLimit;

        Result(final int sampleSize, final int initialCapacity, final float loadFactor,
                final double hashOverloadPercentage, final long averagePutTime,
                final long averageGetTime, final int hashLimit) {

            this.sampleSize = sampleSize;
            this.initialCapacity = initialCapacity;
            this.loadFactor = loadFactor;
            this.hashOverloadPercentage = hashOverloadPercentage;
            this.averagePutTime = averagePutTime;
            this.averageGetTime = averageGetTime;
            this.hashLimit = hashLimit;

        }

        @Override
        public int compareTo(final Result o) {

            final long putDiff = o.averagePutTime - this.averagePutTime;
            final long getDiff = o.averageGetTime - this.averageGetTime;

            return (int)(putDiff + getDiff);
        }

        void printSummary() {

            System.out.println("" + averagePutTime + " ns per 10 puts, "
                + averageGetTime + " ns per 10 gets, for a load factor of "
                + loadFactor + ", initial capacity of " + initialCapacity
                + " for " + sampleSize + " mappings and " + hashOverloadPercentage
                + "% hash code overload.");

        }

    }

}

Running this might take a while. The results are printed out on standard out. You might notice I've commented out a line. That line calls a visualizer that outputs visual representations of the results to png files. The class for this is given below. If you wish to run it, uncomment the appropriate line in the code above. Be warned: the visualizer class assumes you're running on Windows and will create folders and files in C:\temp. When running on another platform, adjust this.

package hashmaptest;

import hashmaptest.HashMapTest.Result;
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.text.DecimalFormat;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
import javax.imageio.ImageIO;

public class ResultVisualizer {

    private static final Map<Integer, Map<Integer, Set<Result>>> sampleSizeToHashLimit =
        new HashMap<Integer, Map<Integer, Set<Result>>>();

    private static final DecimalFormat df = new DecimalFormat("0.00");

    static void visualizeResults(final List<Result> results) throws IOException {

        final File tempFolder = new File("C:\\temp");
        final File baseFolder = makeFolder(tempFolder, "hashmap_tests");

        long bestPutTime = -1L;
        long worstPutTime = 0L;
        long bestGetTime = -1L;
        long worstGetTime = 0L;

        for(final Result result : results) {

            final Integer sampleSize = result.sampleSize;
            final Integer hashLimit = result.hashLimit;
            final long putTime = result.averagePutTime;
            final long getTime = result.averageGetTime;

            if(bestPutTime == -1L || putTime < bestPutTime)
                bestPutTime = putTime;
            if(bestGetTime <= -1.0f || getTime < bestGetTime)
                bestGetTime = getTime;

            if(putTime > worstPutTime)
                worstPutTime = putTime;
            if(getTime > worstGetTime)
                worstGetTime = getTime;

            Map<Integer, Set<Result>> hashLimitToResults =
                sampleSizeToHashLimit.get(sampleSize);
            if(hashLimitToResults == null) {
                hashLimitToResults = new HashMap<Integer, Set<Result>>();
                sampleSizeToHashLimit.put(sampleSize, hashLimitToResults);
            }
            Set<Result> resultSet = hashLimitToResults.get(hashLimit);
            if(resultSet == null) {
                resultSet = new HashSet<Result>();
                hashLimitToResults.put(hashLimit, resultSet);
            }
            resultSet.add(result);

        }

        System.out.println("Best average put time: " + bestPutTime + " ns");
        System.out.println("Best average get time: " + bestGetTime + " ns");
        System.out.println("Worst average put time: " + worstPutTime + " ns");
        System.out.println("Worst average get time: " + worstGetTime + " ns");

        for(final Integer sampleSize : sampleSizeToHashLimit.keySet()) {

            final File sizeFolder = makeFolder(baseFolder, "sample_size_" + sampleSize);

            final Map<Integer, Set<Result>> hashLimitToResults =
                sampleSizeToHashLimit.get(sampleSize);

            for(final Integer hashLimit : hashLimitToResults.keySet()) {

                final File limitFolder = makeFolder(sizeFolder, "hash_limit_" + hashLimit);

                final Set<Result> resultSet = hashLimitToResults.get(hashLimit);

                final Set<Float> loadFactorSet = new HashSet<Float>();
                final Set<Integer> initialCapacitySet = new HashSet<Integer>();

                for(final Result result : resultSet) {
                    loadFactorSet.add(result.loadFactor);
                    initialCapacitySet.add(result.initialCapacity);
                }

                final List<Float> loadFactors = new ArrayList<Float>(loadFactorSet);
                final List<Integer> initialCapacities = new ArrayList<Integer>(initialCapacitySet);

                Collections.sort(loadFactors);
                Collections.sort(initialCapacities);

                final BufferedImage putImage =
                    renderMap(resultSet, loadFactors, initialCapacities, worstPutTime, bestPutTime, false);
                final BufferedImage getImage =
                    renderMap(resultSet, loadFactors, initialCapacities, worstGetTime, bestGetTime, true);

                final String putFileName = "size_" + sampleSize + "_hlimit_" + hashLimit + "_puts.png";
                final String getFileName = "size_" + sampleSize + "_hlimit_" + hashLimit + "_gets.png";

                writeImage(putImage, limitFolder, putFileName);
                writeImage(getImage, limitFolder, getFileName);

            }

        }

    }

    private static File makeFolder(final File parent, final String folder) throws IOException {

        final File child = new File(parent, folder);

        if(!child.exists())
            child.mkdir();

        return child;

    }

    private static BufferedImage renderMap(final Set<Result> results, final List<Float> loadFactors,
            final List<Integer> initialCapacities, final float worst, final float best,
            final boolean get) {

        //[x][y] => x is mapped to initial capacity, y is mapped to load factor
        final Color[][] map = new Color[initialCapacities.size()][loadFactors.size()];

        for(final Result result : results) {
            final int x = initialCapacities.indexOf(result.initialCapacity);
            final int y = loadFactors.indexOf(result.loadFactor);
            final float time = get ? result.averageGetTime : result.averagePutTime;
            final float score = (time - best)/(worst - best);
            final Color c = new Color(score, 1.0f - score, 0.0f);
            map[x][y] = c;
        }

        final int imageWidth = initialCapacities.size() * 40 + 50;
        final int imageHeight = loadFactors.size() * 40 + 50;

        final BufferedImage image =
            new BufferedImage(imageWidth, imageHeight, BufferedImage.TYPE_3BYTE_BGR);

        final Graphics2D g = image.createGraphics();

        g.setColor(Color.WHITE);
        g.fillRect(0, 0, imageWidth, imageHeight);

        for(int x = 0; x < map.length; ++x) {

            for(int y = 0; y < map[x].length; ++y) {

                g.setColor(map[x][y]);
                g.fillRect(50 + x*40, imageHeight - 50 - (y+1)*40, 40, 40);

                g.setColor(Color.BLACK);
                g.drawLine(25, imageHeight - 50 - (y+1)*40, 50, imageHeight - 50 - (y+1)*40);

                final Float loadFactor = loadFactors.get(y);
                g.drawString(df.format(loadFactor), 10, imageHeight - 65 - (y)*40);

            }

            g.setColor(Color.BLACK);
            g.drawLine(50 + (x+1)*40, imageHeight - 50, 50 + (x+1)*40, imageHeight - 15);

            final int initialCapacity = initialCapacities.get(x);
            g.drawString(((initialCapacity%1000 == 0) ? "" + (initialCapacity/1000) + "K" : "" + initialCapacity), 15 + (x+1)*40, imageHeight - 25);
        }

        g.drawLine(25, imageHeight - 50, imageWidth, imageHeight - 50);
        g.drawLine(50, 0, 50, imageHeight - 25);

        g.dispose();

        return image;

    }

    private static void writeImage(final BufferedImage image, final File folder,
            final String filename) throws IOException {

        final File imageFile = new File(folder, filename);

        ImageIO.write(image, "png", imageFile);

    }

}

The visualized output is as follows:

  • Tests are divided first by collection size, then by hash limit.
  • For each test, there's an output image regarding the average put time (per 10 puts) and the average get time (per 10 gets). The images are two-dimensional "heat maps" that show a color per combination of initial capacity and load factor.
  • The colours in the images are based on the average time on a normalized scale from best to worst result, ranging from saturated green to saturated red. In other words, the best time will be fully green, while the worst time will be fully red. Two different time measurements should never have the same colour.
  • The colour maps are calculated separately for puts and gets, but encompass all tests for their respective categories.
  • The visualizations show the initial capacity on their x axis, and the load factor on the y axis.

Without further ado, let's take a look at the results. I'll start with the results for puts.

Put results


Collection size: 100. Hash limit: 50. This means each hash code should occur twice and every other key collides in the hash map.

Well, that doesn't start off very good. We see that there's a big hotspot for an initial capacity 25% above the collection size, with a load factor of 1. The lower left corner doesn't perform too well.


Collection size: 100. Hash limit: 90. One in ten keys has a duplicate hash code.

This is a slightly more realistic scenario, not having a perfect hash function but still 10% overload. The hotspot is gone, but the combination of a low initial capacity with a low load factor obviously doesn't work.


Collection size: 100. Hash limit: 100. Each key as its own unique hash code. No collisions expected if there are enough buckets.

An initial capacity of 100 with a load factor of 1 seems fine. Surprisingly, a higher initial capacity with a lower load factor isn't necessarily good.


Collection size: 1000. Hash limit: 500. It's getting more serious here, with 1000 entries. Just like in the first test, there's a hash overload of 2 to 1.

The lower left corner is still not doing well. But there seems to be a symmetry between the combo of lower initial count/high load factor and higher initial count/low load factor.


Collection size: 1000. Hash limit: 900. This means one in ten hash codes will occur twice. Reasonable scenario regarding collisions.

There's something very funny going on with the unlikely combo of an initial capacity that's too low with a load factor above 1, which is rather counter-intuitive. Otherwise, still quite symmetrical.


Collection size: 1000. Hash limit: 990. Some collisions, but only a few. Quite realistic in this respect.

We've got a nice symmetry here. Lower left corner is still sub-optimal, but the combos 1000 init capacity/1.0 load factor versus 1250 init capacity/0.75 load factor are at the same level.


Collection size: 1000. Hash limit: 1000. No duplicate hash codes, but now with a sample size of 1000.

Not much to be said here. The combination of a higher initial capacity with a load factor of 0.75 seems to slightly outperform the combination of 1000 initial capacity with a load factor of 1.


Collection size: 100_000. Hash limit: 10_000. Alright, it's getting serious now, with a sample size of one hundred thousand and 100 hash code duplicates per key.

Yikes! I think we found our lower spectrum. An init capacity of exactly the collection size with a load factor of 1 is doing really well here, but other than that it's all over the shop.


Collection size: 100_000. Hash limit: 90_000. A bit more realistic than the previous test, here we've got a 10% overload in hash codes.

The lower left corner is still undesirable. Higher initial capacities work best.


Collection size: 100_000. Hash limit: 99_000. Good scenario, this. A large collection with a 1% hash code overload.

Using the exact collection size as init capacity with a load factor of 1 wins out here! Slightly larger init capacities work quite well, though.


Collection size: 100_000. Hash limit: 100_000. The big one. Largest collection with a perfect hash function.

Some surprising stuff here. An initial capacity with 50% additional room at a load factor of 1 wins.


Alright, that's it for the puts. Now, we'll check the gets. Remember, the below maps are all relative to best/worst get times, the put times are no longer taken into account.

Get results


Collection size: 100. Hash limit: 50. This means each hash code should occur twice and every other key was expected to collide in the hash map.

Eh... What?


Collection size: 100. Hash limit: 90. One in ten keys has a duplicate hash code.

Whoa Nelly! This is the most likely scenario to correlate with the asker's question, and apparently an initial capacity of 100 with a load factor of 1 is one of the worst things here! I swear I didn't fake this.


Collection size: 100. Hash limit: 100. Each key as its own unique hash code. No collisions expected.

This looks a bit more peaceful. Mostly the same results across the board.


Collection size: 1000. Hash limit: 500. Just like in the first test, there's a hash overload of 2 to 1, but now with a lot more entries.

Looks like any setting will yield a decent result here.


Collection size: 1000. Hash limit: 900. This means one in ten hash codes will occur twice. Reasonable scenario regarding collisions.

And just like with the puts for this setup, we get an anomaly in a strange spot.


Collection size: 1000. Hash limit: 990. Some collisions, but only a few. Quite realistic in this respect.

Decent performance everywhere, save for the combination of a high initial capacity with a low load factor. I'd expect this for the puts, since two hash map resizes might be expected. But why on the gets?


Collection size: 1000. Hash limit: 1000. No duplicate hash codes, but now with a sample size of 1000.

A wholly unspectacular visualization. This seems to work no matter what.


Collection size: 100_000. Hash limit: 10_000. Going into the 100K again, with a whole lot of hash code overlap.

It doesn't look pretty, although the bad spots are very localized. Performance here seems to depend largely on a certain synergy between settings.


Collection size: 100_000. Hash limit: 90_000. A bit more realistic than the previous test, here we've got a 10% overload in hash codes.

Much variance, although if you squint you can see an arrow pointing to the upper right corner.


Collection size: 100_000. Hash limit: 99_000. Good scenario, this. A large collection with a 1% hash code overload.

Very chaotic. It's hard to find much structure here.


Collection size: 100_000. Hash limit: 100_000. The big one. Largest collection with a perfect hash function.

Anyone else thinks this is starting to look like Atari graphics? This seems to favour an initial capacity of exactly the collection size, -25% or +50%.


Alright, it's time for conclusions now...

  • Regarding put times: you'll wish to avoid initial capacities that are lower than the expected number of map entries. If an exact number is known beforehand, that number or something slightly above it seems to work best. High load factors can offset lower initial capacities due to earlier hash map resizes. For higher initial capacities, they don't seem to matter that much.
  • Regarding get times: results are slightly chaotic here. There's not much to conclude. It seems to rely very much on subtle ratios between hash code overlap, initial capacity and load factor, with some supposedly bad setups performing well and good setups performing awfully.
  • I'm apparently full of crap when it comes to assumptions about Java performance. The truth is, unless you are perfectly tuning your settings to the implementation of HashMap, the results are going to be all over the place. If there's one thing to take away from this, it's that the default initial size of 16 is a bit dumb for anything but the smallest maps, so use a constructor that sets the initial size if you have any sort of idea about what order of size it's going to be.
  • We're measuring in nanoseconds here. The best average time per 10 puts was 1179 ns and the worst 5105 ns on my machine. The best average time per 10 gets was 547 ns and the worst 3484 ns. That may be a factor 6 difference, but we're talking less than a millisecond. On collections that are vastly larger than what the original poster had in mind.

Well, that's it. I hope my code doesn't have some horrendous oversight that invalidates everything I've posted here. This has been fun, and I've learned that in the end you may just as well rely on Java to do its job than to expect much difference from tiny optimizations. That is not to say that some stuff shouldn't be avoided, but then we're mostly talking about constructing lengthy Strings in for loops, using the wrong datastructures and making O(n^3) algorithsm.

这篇关于什么是固定大小的HashMap的最佳容量和负载因子?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-03 10:48