问题描述
使用计时测试,我发现使用push!
增长Vector{Array{Float64}}
对象要比仅使用Array{Float64}
对象和hcat
或vcat
增长得多.但是,计算完成后,我需要将结果对象更改为Array{Float64}
进行进一步分析.是否有一种不管尺寸大小都可以工作的方法?例如,如果我通过
Using timing tests, I found that it's much more performant to grow Vector{Array{Float64}}
objects using push!
than it is to simply use an Array{Float64}
object and either hcat
or vcat
. However, after the computation is completed, I need to change the resulting object to an Array{Float64}
for further analysis. Is there a way that works regardless of the dimensions? For example, if I generate the Vector
of Array
s via
u = [1 2 3 4
1 3 3 4
1 5 6 3
5 2 3 1]
uFull = Vector{Array{Int}}(0)
push!(uFull,u)
for i = 1:10000
push!(uFull,u)
end
我可以这样进行转换:
fill = Array{Int}(size(uFull)...,size(u)...)
for i in eachindex(uFull)
fill[i,:,:] = uFull[i]
end
但是请注意,这需要我知道数组是矩阵(二维).如果是3维的,我将需要另一个:
,因此这不适用于任意尺寸.
but notice this requires that I know the arrays are matrices (2-dimensional). If it's 3-dimensional, I would need another :
, and so this doesn't work for arbitrary dimensions.
请注意,我还需要一种任意尺寸的逆变换"形式(除了首先由整个数组的最后一个索引索引的索引),而且我目前拥有
Note that I also need a form of the "inverse transform" (except first indexed by the last index of the full array) in arbitrary dimensions, and I currently have
filla = Vector{Array{Int}}(size(fill)[end])
for i in 1:size(fill)[end]
filla[i] = fill[:,:,i]'
end
我认为第一次转换的方法也可能会解决第二次转换.
I assume the method for the first conversion will likely solve the second as well.
推荐答案
这是Julia的自定义数组基础结构擅长.我认为这里最简单的解决方案是实际制作一个特殊的数组类型来为您完成此转换:
This is the sort of thing that Julia's custom array infrastructure excels at. I think the simplest solution here is to actually make a special array type that does this transformation for you:
immutable StackedArray{T,N,A} <: AbstractArray{T,N}
data::A # A <: AbstractVector{<:AbstractArray{T,N-1}}
dims::NTuple{N,Int}
end
function StackedArray(vec::AbstractVector)
@assert all(size(vec[1]) == size(v) for v in vec)
StackedArray(vec, (length(vec), size(vec[1])...))
end
StackedArray{T, N}(vec::AbstractVector{T}, dims::NTuple{N}) = StackedArray{eltype(T),N,typeof(vec)}(vec, dims)
Base.size(S::StackedArray) = S.dims
@inline function Base.getindex{T,N}(S::StackedArray{T,N}, I::Vararg{Int,N})
@boundscheck checkbounds(S, I...)
S.data[I[1]][Base.tail(I)...]
end
现在,只需将向量包装在StackedArray中,它的行为就类似于N + 1维数组.这可以扩展并具有更多功能(它可以类似地支持setindex!
甚至push!
ing数组以本机连接),但是我认为这足以解决您的问题.通过简单地将uFull
包装在StackedArray
中,您将获得一个与Array{T, N+1}
相似的对象.制作一个copy
,您将得到一个密集的Array{T, N+1}
,而无需自己编写for循环.
Now just wrap your vector in a StackedArray and it'll behave like an N+1 dimensional array. This could be expanded and made more featureful (it could similarly support setindex!
or even push!
ing arrays to concatenate natively), but I think that it's sufficient to solve your problem. By simply wrapping uFull
in a StackedArray
you get an object that acts like an Array{T, N+1}
. Make a copy
, and you get exactly a dense Array{T, N+1}
without ever needing to write a for loop yourself.
julia> S = StackedArray(uFull)
10001x4x4 StackedArray{Int64,3,Array{Array{Int64,2},1}}:
[:, :, 1] =
1 1 1 5
1 1 1 5
1 1 1 5
…
julia> squeeze(S[1:1, :, :], 1) == u
true
julia> copy(S) # returns a dense Array{T,N}
10001x4x4 Array{Int64,3}:
[:, :, 1] =
1 1 1 5
1 1 1 5
…
最后,我要指出这里还有另一个解决方案:您可以引入自定义数组类型 sooner ,并创建一个GrowableArray
,将其元素内部存储为线性Vector{T}
,但是可以直接推送整个列或数组.
Finally, I'll just note that there's another solution here: you could introduce the custom array type sooner, and make a GrowableArray
that internally stores its elements as a linear Vector{T}
, but allows pushing entire columns or arrays directly.
这篇关于朱莉娅:将数组矢量转换为任意维度的数组的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!