问题描述
我正在一个使用Raspberry Pi 3 B的项目中,在该项目中,我通过ADC MPC3008从IR传感器(Sharp GP2Y0A21YK0F)获取数据,并使用PyQtgraph库实时显示.
I am working in a project using Raspberry Pi 3 B where I get data from a IR sensor(Sharp GP2Y0A21YK0F) through a ADC MPC3008 and display it in real-time using PyQtgraph library.
ADC的数据表显示,在5.0V时,采样率为200khz.但是我每秒只能得到大约30个样本.
The datasheet of the ADC says that at 5.0V, the sampling rate is 200khz. However I am only getting about 30 samples per second.
使用Raspberry pi是否有可能达到200khz?
Is it possible to achieve 200khz using Raspberry pi?
如果是,我应该学习或实施什么以获得它?
If yes, what should I study or implement in order to obtain it?
如果没有,我应该怎么做才能获得尽可能高的采样率?如何找出最高采样率?
If not, what should I do to obtain the highest sample rate possible and how can I find out what is the highest sample rate?
这是我的代码:
# -*- coding: utf-8 -*-
import time
import Adafruit_GPIO.SPI as SPI
import Adafruit_MCP3008
from collections import deque
import serial
import pyqtgraph as pg
from pyqtgraph.Qt import QtCore, QtGui
import numpy as np
SPI_PORT = 0
SPI_DEVICE = 0
mcp = Adafruit_MCP3008.MCP3008(spi=SPI.SpiDev(SPI_PORT, SPI_DEVICE))
win = pg.GraphicsWindow()
win.setWindowTitle('pyqtgraph example: Scrolling Plots')
nsamples=600 #tamanho das matrizes para os dados
tx_aq = 0 #velocidade da aquisição
intervalo_sp = 0.5 #intervalo para secao de poincare
# 1) Simplest approach -- update data in the array such that plot appears to scroll
# In these examples, the array size is fixed.
p1 = win.addPlot()
p1.setRange(yRange=[0,35])
p2 = win.addPlot()
p2.setRange(yRange=[-100,100])
p3 = win.addPlot()
p3.setRange(yRange=[-100,100])
p3.setRange(xRange=[-0,35])
#p3.plot(np.random.normal(size=100), pen=(200,200,200), symbolBrush=(255,0,0), symbolPen='w')
'''
p3.setDownsampling(mode='peak')
p3.setClipToView(True)
p3.setRange(xRange=[-100, 0])
p3.setLimits(xMax=0)
'''
data1= np.zeros((nsamples,2),float) #ARMAZENAR POSICAO
vec_0=deque()
vec_1=deque()
vec_2=deque()
ptr1 = 0
data2= np.zeros((nsamples,2),float) #ARMAZENAR VELOCIDADE
diff=np.zeros((2,2),float)
diff_v=deque()
data3= np.zeros((nsamples,2),float)
data3_sp=np.zeros((1,2),float)
ptr3=0
curve1 = p1.plot(data1)
curve2 = p2.plot(data2)
curve3 = p3.plot(data3)
#Coeficientes da calibração do IR
c1=-7.246
c2=44.17
c3=-95.88
c4=85.28
tlast=time.clock()
tlast_sp=time.clock()
#print tlast
def getdata():
global vec_0, vec_1, vec_2, tlast
timenow=time.clock()
if timenow-tlast>=tx_aq:
#name=input("HUGO")
tlast=timenow
t0=float(time.clock())
str_0 =mcp.read_adc(0)
t1=float(time.clock())
str_1 =mcp.read_adc(0)
t2=float(time.clock())
str_2 =mcp.read_adc(0)
d0x=(float(str_0))*(3.3/1023)
d0= c1*d0x**3+c2*d0x**2+c3*d0x+c4
vec_0=(t0, d0)
d1x=(float(str_1))*(3.3/1023)
d1= c1*d1x**3+c2*d1x**2+c3*d1x+c4
vec_1=(t1, d1)
d2x=(float(str_2))*(3.3/1023)
d2= c1*d2x**3+c2*d2x**2+c3*d2x+c4
vec_2=(t2, d2)
functions()
def diferenciar():
global data2
diff=(data1[-1,1]-data1[-3,1])/(data1[-1,0]-data1[-3,0])
data2[:-1] = data2[1:]
data2[-1,1] = diff
data2[-1,0] = data1[-2,0]
def organizar():
global data1, data3
data1[:-1] = data1[1:]
vec_x1=np.array(vec_1)
data1[-1]=vec_x1
def EF(): #ESPACO DE FASE
global data3, ptr3
data3[:-1] = data3[1:]
data3[-1,0]=data1[-1,1]
data3[-1,1]=data2[-1,1]
def SP():
global timenow_sp, tlast_sp
timenow_sp=time.clock()
if timenow_sp-tlast_sp>=intervalo_sp:
tlast_sp=timenow_sp
data3_sp[0,0]=data3[-2,0]
data3_sp[0,1]=data3[-2,1]
p3.plot(data3_sp, pen=None, symbol='o', symbolPen=None, symbolSize=4, symbolBrush=('r'))
#print data3_sp
def plotar():
global ptr1
curve1.setData(data1)
ptr1 += 1
curve2.setData(data2)
#curve2.setPos(ptr1, 0)
#p3.plot(data3)
def functions():
diferenciar()
organizar()
EF()
SP()
plotar()
def update1():
global data1, curve1, ptr1
getdata()
# update all plots
def update():
update1()
timer = pg.QtCore.QTimer()
timer.timeout.connect(update)
timer.start(50)
## Start Qt event loop unless running in interactive mode or using pyside.
if __name__ == '__main__':
import sys
if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'):
QtGui.QApplication.instance().exec_()
我正在尝试找到一种解决方法,但是到目前为止,我失败了.
I am trying to find a way to solve it, but I have failed so far.
你们会帮助我吗?或者至少指出我在哪里可以找到有关此信息的信息?
Would you guys help me with that or at least point me out where I can find information about this?
推荐答案
使用Raspberry Pi之类的通用计算机(尤其是MCP3008
)无法实现这种采样率.原因是MCP系列ADC在~2.7Mhz
的SPI时钟5V
处达到最高值.
This kind of Sampling rate is not achievable with a general-purpose computer like Raspberry Pi, especially with MCP3008
. The reason being the MCP series of ADC's tops out at ~2.7Mhz
SPI clock at 5V
.
要以200KHz
速率阅读,您需要一块专用板.
In order to read at 200KHz
rate, you would need a dedicated board.
但是,您可以尝试PCM1803A
,它可以明显达到采样率,最多为96 kHz
,
However, you can try PCM1803A
which could evidently achieve sampling rate of up to 96 kHz
,
在此处中对此进行了讨论,
2个通道* 150ksps = 300ksps
2 channels * 150ksps = 300ksps
有开销,假设每个样本大约32位, 9.6mbps的原始数据
with overhead, assuming about 32 bit per sample, you are looking at 9.6mbps of raw data
仅凭Pi和ADC是不可能的.
NO WAY with just a Pi and ADC.
您需要一个外部微控制器/ADC将数据发送到Pi 通过USB或以太网
You need an external microcontroller / adc sending the data to the Pi over USB or Ethernet
和此处,
- Raspberry Pi不是为高速数据收集而设计的
- MCP系列ADC的最高输出电压为5V时的〜2.7Mhz SPI时钟
- RPi的SPI延迟
- the Raspberry Pi is NOT designed for high speed data collection
- the MCP series of ADC's tops out at ~2.7Mhz SPI clock at 5V
- SPI latency with the RPi
Pi上的SPI接口根本无法准确 以精确的间隔从ADC读取100,000个样本.
The SPI interface on the Pi is simply not capable of accurately reading 100,000 samples from an ADC at precise intervals.
这篇关于如何使用ADC在Raspbery Pi中获得可能的最高采样率?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!