问题描述
Cor.test()
接受向量 x
和 y
作为参数,但是我有一个要成对测试的完整数据矩阵。 Cor()
将此矩阵作为参数很好,我希望找到一种方法来对 cor.test()做同样的事情
。
Cor.test()
takes vectors x
and y
as arguments, but I have an entire matrix of data that I want to test, pairwise. Cor()
takes this matrix as an argument just fine, and I'm hoping to find a way to do the same for cor.test()
.
其他人的常见建议似乎是使用 cor.prob()
:
The common advice from other folks seems to be to use cor.prob()
:
但是这些p值与 cor.test()
生成的p值不同!!!与 cor.prob相比,
。 Cor.test()
似乎还能够更好地处理成对删除(我的数据集中有很多丢失的数据)。 ()
But these p-values are not the same as those generated by cor.test()
!!! Cor.test()
also seems better equipped to handle pairwise deletion (I have quite a bit of missing data in my data set) than cor.prob()
.
有人对 cor.prob()
有什么选择吗?如果解决方案涉及嵌套的for循环,就这样吧(我对 R
足够陌生,即使这对我来说也是个问题)。
Does anybody have any alternatives to cor.prob()
? If the solution involves nested for loops, so be it (I'm new enough to R
for even this to be problematic for me).
推荐答案
corr.test
在 psych
包中旨在做到这一点:
corr.test
in the psych
package is designed to do this:
library("psych")
data(sat.act)
corr.test(sat.act)
如注释中所述,复制 p来自整个矩阵的 cor.test()
函数中的值,那么您需要关闭 p 的调整-多个比较的值(默认为使用Holm的调整方法):
As noted in the comments, to replicate the p-values from the base cor.test()
function over the entire matrix, then you need to turn off adjustment of the p-values for multiple comparisons (the default is to use Holm's method of adjustment):
corr.test(sat.act, adjust = "none")
[但是在解释这些结果时要小心!]
[But be careful when interpreting those results!]
这篇关于cor.test()的矩阵版本的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!