问题描述
我正在尝试使用R中实现的JAGS将多元模型拟合到物种组成数据.我有3个物种相对丰度(界于[0,1]之间)的数据,其中两个具有相关性.这是生成相似数据的代码.
I am trying to fit a a multivariate model to species composition data using JAGS, implemented in R. I have data on 3 species relative abundances (bounded between [0,1]), two of which are correlated. Here is code to generate similar data.
#generate some correlated fractional composition data.
y1 <- runif(100,10,200)
y2 <- y1*1.5 + rnorm(100, sd = 5)
y3 <- runif(100,10,200)
total <- y1+y2+y3
y1 <- y1/(total)
y2 <- y2/(total)
y3 <- y3/(total)
y <- data.frame(y1,y2,y3)
y
是我的三个因变量y1
,y2
和y3
的data.frame.我想对这些数据使用仅截距模型,考虑使用dirlichet分布(β分布的多元扩展)来解释因变量之间的协方差.
y
is a data.frame of my three dependent variables, y1
,y2
and y3
. I would like to fit an intercept only model to these data, accounting for the covariance among the dependent variables using a dirlichet disitribution, the multivariate extension of the beta distribution.
我有点卡住了.我可以使用R中的runjags
包,使用beta分布精细法将其编码为单个因变量,如下所示:
I'm sort of stuck. I can code this up for a single dependent variable using a beta distribution fine using the runjags
package in R as follows:
library(runjags)
#Write JAGS model, save as R object.
jags.model = "
model{
# priors
a0 ~ dnorm(0, .001)
t0 ~ dnorm(0, .01)
tau <- exp(t0)
# likelihood for continuous component - predicted value on interval (0,1)
for (i in 1:N){
y[i] ~ dbeta(p[i], q[i])
p[i] <- mu[i] * tau
q[i] <- (1 - mu[i]) * tau
logit(mu[i]) <- a0
}
}
"
#generate JAGS data as list.
jags.data <- list(y = y1,
N = length(y1))
#Fit a JAGS model using run.jags
jags.out <- run.jags(jags.model,
data=jags.data,
adapt = 1000,
burnin = 1000,
sample = 2000,
n.chains=3,
monitor=c('a0'))
Mu问题是:如何使用R中实现的JAGS中的dirlichet分布将其扩展到多变量情况?如果我们可以考虑y
矩阵中的协方差,那么将有好处.
Mu question is: how can I extend this to the multivariate case, using the dirlichet distribution in JAGS, implemented in R? Bonus if we can account for covariance in the y
matrix.
推荐答案
使用原始问题中提供的伪数据,这是JAGS中的直接解决方案.
Here is a straightforward solution in JAGS, using the pseudo-data provided in the original question.
JAGS数据对象:
y <- as.matrix(y)
jags.data <- list(y = y,
N = nrow(y),
N.spp = ncol(y))
JAGS模型作为R对象jags.model
:
JAGS model as the R object jags.model
:
jags.model = "
model {
#setup priors for each species
for(j in 1:N.spp){
m0[j] ~ dgamma(1.0E-3, 1.0E-3) #intercept prior
}
#implement dirlichet
for(i in 1:N){
for(j in 1:N.spp){
log(a0[i,j]) <- m0[j] ## eventually add linear model here
}
y[i,1:N.spp] ~ ddirch(a0[i,1:N.spp])
}
} #close model loop.
"
继续进行模型拟合,监视m0
截距参数,该参数是一个向量,表示每个物种组的截距.
Go ahead and fit the model, monitoring the m0
intercept parameter, which is a vector, an intercept for each species group.
#Fit a JAGS model using run.jags
jags.out <- run.jags(jags.model,
data=jags.data,
adapt = 100,
burnin = 100,
sample = 200,
n.chains=3,
monitor=c('m0'))
这篇关于在JAGS中为R拟合多元dirlichet模型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!