从第二个链接开始,第一个答案使用 Python 库,即使我们假设地球是球体,第二个答案方法也不会给出非常精确的区域(我是对的)?如果我们假设地球是球体,我可以采用什么方法来计算面积(成本更低)?此外,我寻找了不同的库(geotools.org 等),但在他们的文档中没有找到关于面积计算的内容. 解决方案 可以在此处找到用于在球体上查找多边形面积的算法:主题:一种计算球面多边形面积的方法您也可以将这篇 NASA JPL 论文用于某些算法:球面上多边形的一些算法.I have searched for explanations and algorhitms how to calculate Earth's polygon surface area. I've found this and thisLets say I got already convex hull points[56.992666,24.126051], [58.00282,25.930147], [58.787955,25.565078], [59.4997,24.861427], [59.463678,24.711365], [59.395767,24.599837], [56.992666,24.126051]From second link the first answers uses Python library and second answer approach won't give quite precise area even if we assume that Earth is sphere (am I right)?What approaches could I take for calculating the area (less expensive) if we assume that Earth is sphere?In addition, I have looked for different libraries (geotools.org etc) but haven't found in their documentation about area calculation. 解决方案 The algorithm for finding the area of a polygon on a sphere can be found here:Thread: A method to compute the area of a spherical polygonYou could also use this NASA JPL paper for some algorithms:Some algorithms for polygons on a sphere. 这篇关于给定纬度和经度计算地球凸包多边形面积的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 上岸,阿里云! 06-06 12:31