本文介绍了SparkSQL Lead/Lag 函数中的动态/变量偏移的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我们能否以某种方式使用取决于 spark SQL 中的领先/滞后函数中的列值的偏移值?

Can we somehow use an offset value that depends on the column value in lead/lag function in spark SQL ?

示例:以下是工作正常的方法.

Example : Here is what works fine.

val sampleData = Seq( ("bob","Developer",125000),
  ("mark","Developer",108000),
  ("carl","Tester",70000),
  ("peter","Developer",185000),
  ("jon","Tester",65000),
  ("roman","Tester",82000),
  ("simon","Developer",98000),
  ("eric","Developer",144000),
  ("carlos","Tester",75000),
  ("henry","Developer",110000)).toDF("Name","Role","Salary")

val window = Window.orderBy("Role")

//Derive lag column for salary
val laggingCol = lag(col("Salary"), 1).over(window)

//Use derived column LastSalary to find difference between current and previous row
val salaryDifference = col("Salary") - col("LastSalary")

//Calculate trend based on the difference
//IF ELSE / CASE can be written using when.otherwise in spark
val trend = when(col("SalaryDiff").isNull || col("SalaryDiff").===(0), "SAME")
  .when(col("SalaryDiff").>(0), "UP")
  .otherwise("DOWN")

sampleData.withColumn("LastSalary", laggingCol)
  .withColumn("SalaryDiff",salaryDifference)
  .withColumn("Trend", trend).show()

现在,我的用例是我们必须传递的偏移量取决于整数类型的特定列.这有点我想工作:

Now, my use case is such that the offset that we have to pass depends on a particular Column of type Integer. This is somewhat I wanted to work :

val sampleData = Seq( ("bob","Developer",125000,2),
  ("mark","Developer",108000,3),
  ("carl","Tester",70000,3),
  ("peter","Developer",185000,2),
  ("jon","Tester",65000,1),
  ("roman","Tester",82000,1),
  ("simon","Developer",98000,2),
  ("eric","Developer",144000,3),
  ("carlos","Tester",75000,2),
  ("henry","Developer",110000,2)).toDF("Name","Role","Salary","ColumnForOffset")

val window = Window.orderBy("Role")

//Derive lag column for salary
val laggingCol = lag(col("Salary"), col("ColumnForOffset")).over(window)

//Use derived column LastSalary to find difference between current and previous row
val salaryDifference = col("Salary") - col("LastSalary")

//Calculate trend based on the difference
//IF ELSE / CASE can be written using when.otherwise in spark
val trend = when(col("SalaryDiff").isNull || col("SalaryDiff").===(0), "SAME")
  .when(col("SalaryDiff").>(0), "UP")
  .otherwise("DOWN")

sampleData.withColumn("LastSalary", laggingCol)
  .withColumn("SalaryDiff",salaryDifference)
  .withColumn("Trend", trend).show()

这将按预期抛出异常,因为偏移量仅采用整数值.让我们讨论一下是否可以为此实现某种逻辑.

This will throw an exception as expected since offset only takes Integer value.Let us discuss if we can somehow implement a logic for this.

推荐答案

可以添加行号列,并根据行号和偏移量进行自连接,例如:

You can add a row number column, and do a self join based on the row number and offset, e.g.:

val df = sampleData.withColumn("rn", row_number().over(window))

val df2 = df.alias("t1").join(
    df.alias("t2"),
    expr("t1.rn = t2.rn + t1.ColumnForOffset"),
    "left"
).selectExpr("t1.*", "t2.Salary as LastSalary")

df2.show
+------+---------+------+---------------+---+----------+
|  Name|     Role|Salary|ColumnForOffset| rn|LastSalary|
+------+---------+------+---------------+---+----------+
|   bob|Developer|125000|              2|  1|      null|
|  mark|Developer|108000|              3|  2|      null|
| peter|Developer|185000|              2|  3|    125000|
| simon|Developer| 98000|              2|  4|    108000|
|  eric|Developer|144000|              3|  5|    108000|
| henry|Developer|110000|              2|  6|     98000|
|  carl|   Tester| 70000|              3|  7|     98000|
|   jon|   Tester| 65000|              1|  8|     70000|
| roman|   Tester| 82000|              1|  9|     65000|
|carlos|   Tester| 75000|              2| 10|     65000|
+------+---------+------+---------------+---+----------+

这篇关于SparkSQL Lead/Lag 函数中的动态/变量偏移的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-11 15:34