问题描述
如果当前总和超过某个阈值,我想使用dplyr重新生成累积总和。在下面,我要对'a'求和。
library(dplyr)
library(tibble)
tib<-tibble(
t = c(1,2,3,4,5,6),
a = c(2,3,1,2,2, 3)
)
#我想要的东西
##脱粒= 5
#轻咬:6 x 4
#tagc
# < dbl> < dbl> < int> < dbl>
#1 1.00 2.00 0 2.00
#2 2.00 3.00 0 5.00
#3 3.00 1.00 1 1.00
#4 4.00 2.00 1 3.00
#5 5.00 2.00 1 5.00
#6 6.00 3.00 2 3.00
#我想要的东西
##脱粒= 4
#轻咬:6 x 4
#tagc
#< dbl> < dbl> < int> < dbl>
#1 1.00 2.00 0 2.00
#2 2.00 3.00 0 5.00
#3 3.00 1.00 1 1.00
#4 4.00 2.00 1 3.00
#5 5.00 2.00 1 5.00
#6 6.00 3.00 2 3.00
#我想要的东西
##脱粒= 6
#轻咬:6 x 4
#tagc
#< dbl> < dbl> < int> < dbl>
#1 1.00 2.00 0 2.00
#2 2.00 3.00 0 5.00
#3 3.00 1.00 0 6.00
#4 4.00 2.00 1 2.00
#5 5.00 2.00 1 4.00
#6 6.00 3.00 1 7.00
我在这里检查了许多类似的问题(例如如果r中的值变为负值,则重置累积金额)并获得了我希望接近的结果,但没有。
我已经尝试了
<$ p的变体$ p>
阈值< -5
tib%&%;%
group_by(g = cumsum(lag(cumsum(a)> = thresh,default = FALSE))) %>%
突变(c = cumsum(a))%&%;%
ungroup()
返回
#小标题:6 x 4
tagc
< dbl> < dbl> < int> < dbl>
1 1.00 2.00 0 2.00
2 2.00 3.00 0 5.00
3 3.00 1.00 1 1.00
4 4.00 2.00 2 2.00
5 5.00 2.00 2.00 3 2.00
6 6.00 3.00 4 3.00
您可以看到组在第一次后没有重置。
我认为您可以在此处使用 accumulate()
来提供帮助。而且我还做了一个包装函数,可用于不同的阈值
sum_reset_at<-function(thresh){
函数(x){
累积(x,〜if_else(.x> = thresh,.y,.x + .y))
}
}
tib%>%mutate(c = sum_reset_at(5)(a))
#tac
#< dbl> < dbl> < dbl>
#1 1 2 2
#2 2 3 5
#3 3 1 1
#4 4 2 3
#5 5 2 5
# 6 6 3 3
tib%>%mutate(c = sum_reset_at(4)(a))
#tac
#< dbl> < dbl> < dbl>
#1 1 2 2
#2 2 3 5
#3 3 1 1
#4 4 2 3
#5 5 2 5
# 6 6 3 3
tib%>%mutate(c = sum_reset_at(6)(a))
#tac
#< dbl> < dbl> < dbl>
#1 1 2 2
#2 2 3 5
#3 3 1 6
#4 4 2 2
#5 5 2 4
# 6 6 3 7
I'd like to generate cumulative sums with a reset if the "current" sum exceeds some threshold, using dplyr. In the below, I want to cumsum over 'a'.
library(dplyr)
library(tibble)
tib <- tibble(
t = c(1,2,3,4,5,6),
a = c(2,3,1,2,2,3)
)
# what I want
## thresh = 5
# A tibble: 6 x 4
# t a g c
# <dbl> <dbl> <int> <dbl>
# 1 1.00 2.00 0 2.00
# 2 2.00 3.00 0 5.00
# 3 3.00 1.00 1 1.00
# 4 4.00 2.00 1 3.00
# 5 5.00 2.00 1 5.00
# 6 6.00 3.00 2 3.00
# what I want
## thresh = 4
# A tibble: 6 x 4
# t a g c
# <dbl> <dbl> <int> <dbl>
# 1 1.00 2.00 0 2.00
# 2 2.00 3.00 0 5.00
# 3 3.00 1.00 1 1.00
# 4 4.00 2.00 1 3.00
# 5 5.00 2.00 1 5.00
# 6 6.00 3.00 2 3.00
# what I want
## thresh = 6
# A tibble: 6 x 4
# t a g c
# <dbl> <dbl> <int> <dbl>
# 1 1.00 2.00 0 2.00
# 2 2.00 3.00 0 5.00
# 3 3.00 1.00 0 6.00
# 4 4.00 2.00 1 2.00
# 5 5.00 2.00 1 4.00
# 6 6.00 3.00 1 7.00
I've examined many of the similar questions here (such as resetting cumsum if value goes to negative in r) and have gotten what I hoped was close, but no.
I've tried variants of
thresh <-5
tib %>%
group_by(g = cumsum(lag(cumsum(a) >= thresh, default = FALSE))) %>%
mutate(c = cumsum(a)) %>%
ungroup()
which returns
# A tibble: 6 x 4
t a g c
<dbl> <dbl> <int> <dbl>
1 1.00 2.00 0 2.00
2 2.00 3.00 0 5.00
3 3.00 1.00 1 1.00
4 4.00 2.00 2 2.00
5 5.00 2.00 3 2.00
6 6.00 3.00 4 3.00
You can see that the "group" is not getting reset after the first time.
I think you can use accumulate()
here to help. And i've also made a wrapper function to use for different thresholds
sum_reset_at <- function(thresh) {
function(x) {
accumulate(x, ~if_else(.x>=thresh, .y, .x+.y))
}
}
tib %>% mutate(c = sum_reset_at(5)(a))
# t a c
# <dbl> <dbl> <dbl>
# 1 1 2 2
# 2 2 3 5
# 3 3 1 1
# 4 4 2 3
# 5 5 2 5
# 6 6 3 3
tib %>% mutate(c = sum_reset_at(4)(a))
# t a c
# <dbl> <dbl> <dbl>
# 1 1 2 2
# 2 2 3 5
# 3 3 1 1
# 4 4 2 3
# 5 5 2 5
# 6 6 3 3
tib %>% mutate(c = sum_reset_at(6)(a))
# t a c
# <dbl> <dbl> <dbl>
# 1 1 2 2
# 2 2 3 5
# 3 3 1 6
# 4 4 2 2
# 5 5 2 4
# 6 6 3 7
这篇关于dplyr / R重置总和的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!