本文介绍了验证python数据类中的详细类型的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

Python 3.7是在不久前发布的,我想测试一些新的dataclass + typing功能.使用本机类型和typing模块中的本机类型,使提示正确工作很容易:

Python 3.7 was released a while ago, and I wanted to test some of the fancy new dataclass+typing features. Getting hints to work right is easy enough, with both native types and those from the typing module:

>>> import dataclasses
>>> import typing as ty
>>> 
... @dataclasses.dataclass
... class Structure:
...     a_str: str
...     a_str_list: ty.List[str]
...
>>> my_struct = Structure(a_str='test', a_str_list=['t', 'e', 's', 't'])
>>> my_struct.a_str_list[0].  # IDE suggests all the string methods :)

但是我想尝试的另一件事是在运行时强制将类型提示作为条件,即,dataclass不可能存在错误的类型.可以很好地实现 __post_init__ :

But one other thing that I wanted to try was forcing the type hints as conditions during runtime, i.e. it should not be possible for a dataclass with incorrect types to exist. It can be implemented nicely with __post_init__:

>>> @dataclasses.dataclass
... class Structure:
...     a_str: str
...     a_str_list: ty.List[str]
...     
...     def validate(self):
...         ret = True
...         for field_name, field_def in self.__dataclass_fields__.items():
...             actual_type = type(getattr(self, field_name))
...             if actual_type != field_def.type:
...                 print(f"\t{field_name}: '{actual_type}' instead of '{field_def.type}'")
...                 ret = False
...         return ret
...     
...     def __post_init__(self):
...         if not self.validate():
...             raise ValueError('Wrong types')

这种validate函数适用于本机类型和自定义类,但不适用于typing模块指定的那些类型:

This kind of validate function works for native types and custom classes, but not those specified by the typing module:

>>> my_struct = Structure(a_str='test', a_str_list=['t', 'e', 's', 't'])
Traceback (most recent call last):
  a_str_list: '<class 'list'>' instead of 'typing.List[str]'
  ValueError: Wrong types

是否有更好的方法来验证具有typing类型的列表的未类型列表?最好不包括检查任何listdicttupleset中所有元素的类型,这些元素都是dataclass'属性.

Is there a better approach to validate an untyped list with a typing-typed one? Preferably one that doesn't include checking the types of all elements in any list, dict, tuple, or set that is a dataclass' attribute.

推荐答案

您应该使用isinstance而不是检查类型是否相等.但是您不能使用参数化的泛型类型(typing.List[int])来执行此操作,必须使用泛型"版本(typing.List).因此,您将能够检查容器类型,而不是所包含的类型.参数化的泛型类型定义了一个__origin__属性,您可以将其用于此目的.

Instead of checking for type equality, you should use isinstance. But you cannot use a parametrized generic type (typing.List[int]) to do so, you must use the "generic" version (typing.List). So you will be able to check for the container type but not the contained types. Parametrized generic types define an __origin__ attribute that you can use for that.

与Python 3.6相反,在Python 3.7中,大多数类型提示都具有有用的__origin__属性.比较:

Contrary to Python 3.6, in Python 3.7 most type hints have a useful __origin__ attribute. Compare:

# Python 3.6
>>> import typing
>>> typing.List.__origin__
>>> typing.List[int].__origin__
typing.List

# Python 3.7
>>> import typing
>>> typing.List.__origin__
<class 'list'>
>>> typing.List[int].__origin__
<class 'list'>

Python 3.8通过 typing.get_origin() 自省功能:

Python 3.8 introduce even better support with the typing.get_origin() introspection function:

# Python 3.8
>>> import typing
>>> typing.get_origin(typing.List)
<class 'list'>
>>> typing.get_origin(typing.List[int])
<class 'list'>

值得注意的例外是typing.Anytyping.Uniontyping.ClassVar…嗯,任何typing._SpecialForm都没有定义__origin__.幸运的是:

Notable exceptions being typing.Any, typing.Union and typing.ClassVar… Well, anything that is a typing._SpecialForm does not define __origin__. Fortunately:

>>> isinstance(typing.Union, typing._SpecialForm)
True
>>> isinstance(typing.Union[int, str], typing._SpecialForm)
False
>>> typing.get_origin(typing.Union[int, str])
typing.Union

但是参数化类型定义了一个__args__属性,该属性将其参数存储为元组. Python 3.8引入了 typing.get_args() 函数来检索它们:

But parametrized types define an __args__ attribute that store their parameters as a tuple; Python 3.8 introduce the typing.get_args() function to retrieve them:

# Python 3.7
>>> typing.Union[int, str].__args__
(<class 'int'>, <class 'str'>)

# Python 3.8
>>> typing.get_args(typing.Union[int, str])
(<class 'int'>, <class 'str'>)

所以我们可以稍微改进类型检查:

So we can improve type checking a bit:

for field_name, field_def in self.__dataclass_fields__.items():
    if isinstance(field_def.type, typing._SpecialForm):
        # No check for typing.Any, typing.Union, typing.ClassVar (without parameters)
        continue
    try:
        actual_type = field_def.type.__origin__
    except AttributeError:
        # In case of non-typing types (such as <class 'int'>, for instance)
        actual_type = field_def.type
    # In Python 3.8 one would replace the try/except with
    # actual_type = typing.get_origin(field_def.type) or field_def.type
    if isinstance(actual_type, typing._SpecialForm):
        # case of typing.Union[…] or typing.ClassVar[…]
        actual_type = field_def.type.__args__

    actual_value = getattr(self, field_name)
    if not isinstance(actual_value, actual_type):
        print(f"\t{field_name}: '{type(actual_value)}' instead of '{field_def.type}'")
        ret = False

这不是完美的,因为它不能解释例如typing.ClassVar[typing.Union[int, str]]typing.Optional[typing.List[int]],但是它应该可以使事情开始.

This is not perfect as it won't account for typing.ClassVar[typing.Union[int, str]] or typing.Optional[typing.List[int]] for instance, but it should get things started.

下一步是应用此检查的方法.

Next is the way to apply this check.

我将使用装饰器路线,而不是使用__post_init__:它可以用于具有类型提示的任何东西,而不仅是dataclasses:

Instead of using __post_init__, I would go the decorator route: this could be used on anything with type hints, not only dataclasses:

import inspect
import typing
from contextlib import suppress
from functools import wraps


def enforce_types(callable):
    spec = inspect.getfullargspec(callable)

    def check_types(*args, **kwargs):
        parameters = dict(zip(spec.args, args))
        parameters.update(kwargs)
        for name, value in parameters.items():
            with suppress(KeyError):  # Assume un-annotated parameters can be any type
                type_hint = spec.annotations[name]
                if isinstance(type_hint, typing._SpecialForm):
                    # No check for typing.Any, typing.Union, typing.ClassVar (without parameters)
                    continue
                try:
                    actual_type = type_hint.__origin__
                except AttributeError:
                    # In case of non-typing types (such as <class 'int'>, for instance)
                    actual_type = type_hint
                # In Python 3.8 one would replace the try/except with
                # actual_type = typing.get_origin(type_hint) or type_hint
                if isinstance(actual_type, typing._SpecialForm):
                    # case of typing.Union[…] or typing.ClassVar[…]
                    actual_type = type_hint.__args__

                if not isinstance(value, actual_type):
                    raise TypeError('Unexpected type for \'{}\' (expected {} but found {})'.format(name, type_hint, type(value)))

    def decorate(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            check_types(*args, **kwargs)
            return func(*args, **kwargs)
        return wrapper

    if inspect.isclass(callable):
        callable.__init__ = decorate(callable.__init__)
        return callable

    return decorate(callable)

用法是

@enforce_types
@dataclasses.dataclass
class Point:
    x: float
    y: float

@enforce_types
def foo(bar: typing.Union[int, str]):
    pass

Appart通过验证上一节中建议的某些类型提示,此方法仍存在一些缺点:

Appart from validating some type hints as suggested in the previous section, this approach still have some drawbacks:

    inspect.getfullargspec不考虑使用字符串(class Foo: def __init__(self: 'Foo'): pass)的
  • 类型提示:您可能要使用 typing.get_type_hints inspect.signature 代替;
  • 不是正确类型的默认值未得到验证:

  • type hints using strings (class Foo: def __init__(self: 'Foo'): pass) are not taken into account by inspect.getfullargspec: you may want to use typing.get_type_hints and inspect.signature instead;
  • a default value which is not the appropriate type is not validated:

@enforce_type
def foo(bar: int = None):
    pass

foo()

不引发任何TypeError.您可能希望结合使用 inspect.Signature.bind inspect.BoundArguments.apply_defaults (如果您要对此进行说明(从而迫使您定义def foo(bar: typing.Optional[int] = None));

does not raise any TypeError. You may want to use inspect.Signature.bind in conjuction with inspect.BoundArguments.apply_defaults if you want to account for that (and thus forcing you to define def foo(bar: typing.Optional[int] = None));

此答案广受欢迎后,受其启发的发布了,需要消除上述缺点已成为现实.因此,我在typing模块上做了更多的工作,并将在此处提出一些发现和新方法.

After this answer got some popularity and a library heavily inspired by it got released, the need to lift the shortcomings mentioned above is becoming a reality. So I played a bit more with the typing module and will propose a few findings and a new approach here.

对于初学者来说,typing在寻找何时可选参数方面做得很好:

For starter, typing is doing a great job in finding when an argument is optional:

>>> def foo(a: int, b: str, c: typing.List[str] = None):
...   pass
... 
>>> typing.get_type_hints(foo)
{'a': <class 'int'>, 'b': <class 'str'>, 'c': typing.Union[typing.List[str], NoneType]}

这非常整洁,绝对是对inspect.getfullargspec的改进,因此最好使用它,因为它还可以正确地将字符串作为类型提示来处理.但是typing.get_type_hints会为其他类型的默认值提供援助:

This is pretty neat and definitely an improvement over inspect.getfullargspec, so better use that instead as it can also properly handle strings as type hints. But typing.get_type_hints will bail out for other kind of default values:

>>> def foo(a: int, b: str, c: typing.List[str] = 3):
...   pass
... 
>>> typing.get_type_hints(foo)
{'a': <class 'int'>, 'b': <class 'str'>, 'c': typing.List[str]}

因此,即使您觉得这种情况非常棘手,您仍可能需要进行更严格的检查.

So you may still need extra strict checking, even though such cases feels very fishy.

接下来是typing提示用作typing._SpecialForm的参数的情况,例如typing.Optional[typing.List[str]]typing.Final[typing.Union[typing.Sequence, typing.Mapping]].由于这些typing._SpecialForm__args__始终是一个元组,因此可以递归地找到该元组中包含的提示的__origin__.结合以上检查,我们将需要过滤剩下的任何typing._SpecialForm.

Next is the case of typing hints used as arguments for typing._SpecialForm, such as typing.Optional[typing.List[str]] or typing.Final[typing.Union[typing.Sequence, typing.Mapping]]. Since the __args__ of these typing._SpecialForms is always a tuple, it is possible to recursively find the __origin__ of the hints contained in that tuple. Combined with the above checks, we will then need to filter any typing._SpecialForm left.

拟议的改进:

import inspect
import typing
from functools import wraps


def _find_type_origin(type_hint):
    if isinstance(type_hint, typing._SpecialForm):
        # case of typing.Any, typing.ClassVar, typing.Final, typing.Literal,
        # typing.NoReturn, typing.Optional, or typing.Union without parameters
        yield typing.Any
        return

    actual_type = typing.get_origin(type_hint) or type_hint  # requires Python 3.8
    if isinstance(actual_type, typing._SpecialForm):
        # case of typing.Union[…] or typing.ClassVar[…] or …
        for origins in map(_find_type_origin, typing.get_args(type_hint)):
            yield from origins
    else:
        yield actual_type


def _check_types(parameters, hints):
    for name, value in parameters.items():
        type_hint = hints.get(name, typing.Any)
        actual_types = tuple(
                origin
                for origin in _find_type_origin(type_hint)
                if origin is not typing.Any
        )
        if actual_types and not isinstance(value, actual_types):
            raise TypeError(
                    f"Expected type '{type_hint}' for argument '{name}'"
                    f" but received type '{type(value)}' instead"
            )


def enforce_types(callable):
    def decorate(func):
        hints = typing.get_type_hints(func)
        signature = inspect.signature(func)

        @wraps(func)
        def wrapper(*args, **kwargs):
            parameters = dict(zip(signature.parameters, args))
            parameters.update(kwargs)
            _check_types(parameters, hints)

            return func(*args, **kwargs)
        return wrapper

    if inspect.isclass(callable):
        callable.__init__ = decorate(callable.__init__)
        return callable

    return decorate(callable)


def enforce_strict_types(callable):
    def decorate(func):
        hints = typing.get_type_hints(func)
        signature = inspect.signature(func)

        @wraps(func)
        def wrapper(*args, **kwargs):
            bound = signature.bind(*args, **kwargs)
            bound.apply_defaults()
            parameters = dict(zip(signature.parameters, bound.args))
            parameters.update(bound.kwargs)
            _check_types(parameters, hints)

            return func(*args, **kwargs)
        return wrapper

    if inspect.isclass(callable):
        callable.__init__ = decorate(callable.__init__)
        return callable

    return decorate(callable)



这篇关于验证python数据类中的详细类型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-23 02:25