本文介绍了在opencv中使用卡尔曼过滤器跟踪多个对象的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我能够使用卡尔曼滤波器成功跟踪单个对象.现在我要跟踪两个对象.我不知道如何对两个对象应用卡尔曼滤波器.谁能帮忙.
I am successfully able to track single object using kalman filter. Now i want track two objects. I have no idea how to apply kalman filter for two objects. Can anyone please help.
推荐答案
看看我的实现.
https://www.youtube.com/watch?v=2fW5TmAtAXM
GitHub上的来源: https://github.com/Smorodov/Multitarget-tracker
Sources on GitHub: https://github.com/Smorodov/Multitarget-tracker
这是项目的main.cpp文件,用于跟踪2个目标:
Here is main.cpp file for the project to track 2 targets:
#include "opencv2/opencv.hpp"
//#include "BackgroundSubtract.h"
//#include "Detector.h"
#include <opencv2/highgui/highgui_c.h>
#include "CTracker.h"
#include <iostream>
#include <vector>
using namespace cv;
using namespace std;
float X=0,Y=0;
float Xmeasured=0,Ymeasured=0;
RNG rng;
//-----------------------------------------------------------------------------------------------------
// Mouse callback
//-----------------------------------------------------------------------------------------------------
void mv_MouseCallback(int event, int x, int y, int /*flags*/, void* /*param*/)
{
if(event == cv::EVENT_MOUSEMOVE)
{
X=(float)x;
Y=(float)y;
}
}
int main(int ac, char** av)
{
int k=0;
// Track colors
Scalar Colors[]={Scalar(255,0,0),Scalar(0,255,0),Scalar(0,0,255),Scalar(255,255,0),Scalar(0,255,255),Scalar(255,255,255)};
namedWindow("Video");
Mat frame=Mat(800,800,CV_8UC3);
VideoWriter vw=VideoWriter::VideoWriter("output.mpeg", CV_FOURCC('P','I','M','1'), 20, frame.size());
// Attach mouse callback to window
setMouseCallback("Video",mv_MouseCallback,0);
CTracker tracker(0.2,0.5,60.0,25,25);
float alpha=0;
while(k!=27)
{
frame=Scalar::all(0);
// add some noise (simulation of real measurement)
Xmeasured=X+rng.gaussian(2.0);
Ymeasured=Y+rng.gaussian(2.0);
// Add tracking targets
// sin and cos added for more fun :)
vector<Point2d> pts;
pts.push_back(Point2d(Xmeasured+100.0*sin(-alpha),Ymeasured+100.0*cos(-alpha))); // 1-st target coords
pts.push_back(Point2d(Xmeasured+100.0*sin(alpha),Ymeasured+100.0*cos(alpha))); // 2-nd target coords
//pts.push_back(Point2d(Xmeasured+100.0*sin(alpha/2.0),Ymeasured+100.0*cos(alpha/2.0)));
//pts.push_back(Point2d(Xmeasured+100.0*sin(alpha/3.0),Ymeasured+100.0*cos(alpha/1.0)));
alpha+=0.05;
// Draw targets
for(int i=0; i<pts.size(); i++)
{
circle(frame,pts[i],3,Scalar(0,255,0),1,CV_AA);
}
// Update tracks
tracker.Update(pts);
// cout << tracker.tracks.size() << endl;
// Draw tracks
for(int i=0;i<tracker.tracks.size();i++)
{
if(tracker.tracks[i]->trace.size()>1)
{
for(int j=0;j<tracker.tracks[i]->trace.size()-1;j++)
{
line(frame,tracker.tracks[i]->trace[j],tracker.tracks[i]->trace[j+1],Colors[i%6],2,CV_AA);
}
}
}
imshow("Video",frame);
// write videoframe to file
// vw << frame;
k=waitKey(10);
}
vw.release();
destroyAllWindows();
return 0;
}
这篇关于在opencv中使用卡尔曼过滤器跟踪多个对象的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!