本文介绍了三元搜索的递归关系的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
三元搜索的递归关系为T(n)= T(n/3)+ 4,递归关系如何,因为在三元搜索中它是以对数3 N为底的对数,因此应该只有3个分区?
The recurrence relation of ternary search is T(n)= T(n/3) + 4, How 4 is in recurrence relation, since in ternary search it's log to the base 3 N, so only 3 partitions should be there ?
推荐答案
三元搜索的递归关系是 T(n)= T(n/3)+ O(1)
甚至是 T(n)= T(2n/3)+ O(1)
.隐藏在 O(1)
中的常量取决于具体的实现方式以及进行分析的方式.它可以是 4
或 3
或其他一些值.应用主定理的情况2 ,您仍然有 O(logn)
.
Recurrence relation for ternary search is T(n) = T(n/3) + O(1)
or even T(n) = T(2n/3) + O(1)
. The constant hidden in this O(1)
depends on concrete implementation and how analysis was conducted. It could be 4
or 3
, or some other value. Applying case 2 of Master theorem you still have O(log n)
.
这篇关于三元搜索的递归关系的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!