问题描述
我一直在做一个矩阵类(作为一个学习练习),我在测试我的逆函数时遇到了问题。
I have been making a matrix class (as a learning exercise) and I have come across and issue whilst testing my inverse function.
我输入一个任意矩阵例如:
I input a arbitrary matrix as such:
2 1 1
1 2 1
1 1 2
得到它来计算逆,我得到正确的结果:
And got it to calculate the inverse and I got the correct result:
0.75 -0.25 -0.25
-0.25 0.75 -0.25
-0.25 -0.25 0.75
但是当我尝试将两者相乘以确保我得到单位矩阵时,我得到:
But when I tried multiplying the two together to make sure I got the identity matrix I get:
1 5.5111512e-017 0
0 1 0
-1.11022302e-0.16 0 1
为什么得到这些结果?我会理解,如果我是乘以奇怪的数字,我可以理解一些舍入误差,但它的总和是:
Why am I getting these results? I would understand if I was multiplying weird numbers where I could understand some rounding errors but the sum it's doing is:
2 * -0.25 + 1 * 0.75 + 1 * -0.25
这显然是0,而不是5.111512e-017
which is clearly 0, not 5.111512e-017
如果我手动得到它做计算;例如:
If I manually get it to do the calculation; eg:
std::cout << (2 * -0.25 + 1 * 0.75 + 1 * -0.25) << "\n";
我预期得到0?
所有数字都表示为双精度。
这是我的乘法重载:
All the numbers are represented as doubles.Here's my multiplcation overload:
Matrix operator*(const Matrix& A, const Matrix& B)
{
if(A.get_cols() == B.get_rows())
{
Matrix temp(A.get_rows(), B.get_cols());
for(unsigned m = 0; m < temp.get_rows(); ++m)
{
for(unsigned n = 0; n < temp.get_cols(); ++n)
{
for(unsigned i = 0; i < temp.get_cols(); ++i)
{
temp(m, n) += A(m, i) * B(i, n);
}
}
}
return temp;
}
throw std::runtime_error("Bad Matrix Multiplication");
}
和访问功能:
double& Matrix::operator()(unsigned r, unsigned c)
{
return data[cols * r + c];
}
double Matrix::operator()(unsigned r, unsigned c) const
{
return data[cols * r + c];
}
这里是找到反函数的函数:
Here's the function to find the inverse:
Matrix Inverse(Matrix& M)
{
if(M.rows != M.cols)
{
throw std::runtime_error("Matrix is not square");
}
int r = 0;
int c = 0;
Matrix augment(M.rows, M.cols*2);
augment.copy(M);
for(r = 0; r < M.rows; ++r)
{
for(c = M.cols; c < M.cols * 2; ++c)
{
augment(r, c) = (r == (c - M.cols) ? 1.0 : 0.0);
}
}
for(int R = 0; R < augment.rows; ++R)
{
double n = augment(R, R);
for(c = 0; c < augment.cols; ++c)
{
augment(R, c) /= n;
}
for(r = 0; r < augment.rows; ++r)
{
if(r == R) { continue; }
double a = augment(r, R);
for(c = 0; c < augment.cols; ++c)
{
augment(r, c) -= a * augment(R, c);
}
}
}
Matrix inverse(M.rows, M.cols);
for(r = 0; r < M.rows; ++r)
{
for(c = M.cols; c < M.cols * 2; ++c)
{
inverse(r, c - M.cols) = augment(r, c);
}
}
return inverse;
}
推荐答案
0.250000000000000005在你的倒置矩阵,他们只是四舍五入显示,所以你看到很好的小圆的数字,如0.25。
You've got numbers like 0.250000000000000005 in your inverted matrix, they're just rounded for display so you see nice little round numbers like 0.25.
这篇关于小数字代替零?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!