本文介绍了一种新的RNG分类方法:显着性水平的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我的实验表明,微软VC ++ 6编译器中的随机数生成器

是一个统计RNG,其显着性水平为


SL> 1.0%(例如1.001%)的统计测试通过测试,

但1.0%未通过...


有人可以确认这个发现吗?


各种软件产品的RNG功能可以用其显着性水平进行分析和分类

如上图所示。

我认为这个IMO的重要发现值得深入研究...... :-)


对于测试方法,请参阅:



My experiments show that the random number generator
in Microsoft''s VC++6 compiler is a statistical RNG with a
significance level 1.0%.
Statistical testing at SL >1.0% (for example 1.001%) passes the test,
but 1.0% does not pass...

Can anybody confirm this finding?

The RNG function of the various SW products can be
analyzed and classified better using its significance level
as shown above.
I think this IMO important finding deserves a deeper research... :-)

For the testing method see:
http://en.wikipedia.org/wiki/Binomial_test
http://en.wikipedia.org/wiki/Binomial_distribution

推荐答案



您对样本量和零假设使用了什么?


-

/〜\ ASCII

\ / Ribbon活动

X反对HTML

/ \电子邮件!


如果通过电子邮件回复,请删除ns_(但保留帖子在

新闻组如果可能的话。

What are you using for your sample size and null hypothesis?

--
/~\ The ASCII
\ / Ribbon Campaign
X Against HTML
/ \ Email!

Remove the ns_ from if replying by e-mail (but keep posts in the
newsgroups if possible).




你在为样本使用什么大小和零假设?


What are you using for your sample size and null hypothesis?



详情请参阅:

样本大小为500(即调用rand()500次),

rnd range是37(即0到36;是的,轮盘模拟)。

在每次rand()调用后执行上面提到的StatTest。

上面说的在一个循环中调用超过30次,每次初始化频率统计数据时


srand(time(0))在pgmstart只执行一次。

Here the details:
Sample size is 500 (ie. calling rand() 500 times),
rnd range is 37 (ie. 0 to 36; yes, a roulette simulation).
Doing the above mentioned StatTest after each rand() call.
The above said is called more than 30 times in a loop,
each time initializing the freq stats anew.
srand(time(0)) done only once at pgmstart.




您对样本量和零假设使用了什么?

What are you using for your sample size and null hypothesis?



H0 = RNG仅在显着性水平> 1%

即通过随机性测试。例如尝试1%和1.001%,你将会看到它总是在< = 1%的水平上失败并且总是在> 1%sig水平上通过。

H0 = RNG passes the randomness test only at a significance level >1%
ie. try out 1% and 1.001% for example and you will
see it always fails at the <=1% level and always passes at >1% sig level.


这篇关于一种新的RNG分类方法:显着性水平的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-11 03:08