本文介绍了是否有可能绘制与ggplot2适合gamp平滑组件?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧! 问题描述 我使用 mgcv 包中的 gam 拟合模型,并将结果存储在 model ,到目前为止,我一直在使用 plot(model)来查看流畅的组件。我最近开始使用ggplot2并且喜欢它的输出。所以我想知道,是否可以使用ggplot2绘制这些图? 以下是一个示例: $ b $ = $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ b model = gam(n〜s(x1,k = 10)+ s(x2,k = 20),family =poisson) plot(model,rug = FALSE,select = 1) plot(model,rug = FALSE,select = 2) 我对 s(x1,k = 10)和 s(x2,k = 20)不适合。 部分回答: 我深入了解 plot.gam code>和 mgcv ::: plot.mgcv.smooth ,并构建了我自己的函数,它从平滑分量中提取预测效果和标准误差。它不处理 plot.gam 的所有选项和案例,所以我只认为它是一个部分解决方案,但它适用于我。 EvaluateSmooths = function(model,select = NULL,x = NULL,n = 100){ if(is.null(select)){ select = 1:length(model $ smooth)} do.call(rbind,lapply(select,function(i){ smooth = model $ smooth [[i] ] data = model $ model if(is.null(x)){ min = min(data [smooth $ term]) max = max (数据[smooth $ term])x = seq(min,max,length = n)} if(smooth $ by ==NA){ by。 level =NA} else { by.level = smooth $ by.level } range = data.frame(x = x,by = by.level) 名称(范围)= c(平滑$ term,平滑$ by) mat = PredictMat(平滑,范围) par =平滑$ first.para:平滑$ last .para y = mat%*%model $系数[par] se = sqrt(rowSums( (mat%*%model $ Vp [par,par,drop = FALSE])* mat )) return(data.frame( label = smooth $ label ,x.var = smooth $ term ,x.val = x ,by.var = smooth $ by ,by.val = by.level ,值= y ,se = se ))}))} 这将返回一个带有光滑组件的融化数据框,所以现在可以在上面的例子中使用 ggplot : smooths = EvaluateSmooths(模型) ggplot(smooths,aes(x.val,value))+ geom_line()+ geom_line(aes(y = value + 2 * se),linetype =dashed)+ geom_line(aes(y = value - 2 * se),linetype = dashed)+ facet_grid(。 〜x.var) 如果有人知道在一般情况下允许这样做的包,我会很感激。解决方案您可以使用与plyr软件包结合的visreg软件包。 ($) library(mgcv) library(visreg) 库(plyr)库(ggplot2) #估算gam模型: x1 = rnorm(1000) x2 = rnorm(1000)$ (x1,k = 10)+ s(x2,k = 20),family =poisson ) #使用plot = FALSE从visreg获得绘图数据而不绘制 plotdata< - visreg(model,type =contrast,plot = FALSE) #visreg的输出是一个长度与'x'变量数量相同的列表,#因此我们使用ldply从每个列表部分选择我们想要的对象并创建一个数据框: smooths< - ldply(plot data,function(part) data.frame(Variable = part $ meta $ x,x = part $ fit [[part $ meta $ x]], smooth = part $ fit $ visregFit, lower = part $ fit $ visregLwr, upper = part $ fit $ visregUpr)) #ggplot: ggplot(smooths,aes(x,smooth))+ geom_line()+ geom_line(aes(y = lower),linetype =dashed)+ geom_line(aes(y = upper) =dashed)+ facet_grid(。 〜变量,scales =free_x) 我们可以把整个东西放到一个函数中, (res = TRUE): ggplot.model< - function(model,type =conditional,res = FALSE, col.line =#7fc97f,col.point =#beaed4,size.line = 1,size.point = 1){ require( (模型,类型=类型,绘图= FALSE) smooths ) data.frame(变量=部分$ meta $ x,x = part $ fit [[part $ meta $ x]], smooth = part $ fit $ visregFit, lower = part $适合$ visregLwr, upper = part $ fit $ visregUpr))残差 data.frame(Variable = part $ meta $ x,x = part $ res [[part $ meta $ x]],y = part $ res $ visregRes)) if(res) ggplot(smooths,aes(x,smo oth))+ geom_line(col = col.line,size = size.line)+ geom_line(aes(y = lower),linetype =dashed,col = col.line,size = size.line) + geom_line(aes(y = upper),linetype =dashed,col = col.line,size = size.line)+ geom_point(data = residuals,aes(x,y), col = col.point,size = size.point)+ facet_grid(。 〜变量,scales =free_x) else ggplot(smooths,aes(x,smooth))+ geom_line(col = col.line,size = size.line)+ geom_line (aes(y = lower),linetype =dashed,col = col.line,size = size.line)+ geom_line(aes(y = upper),linetype =dashed,col = col。 line,size = size.line)+ facet_grid(。〜Variable,scales =free_x)} ggplot.model(模型) ggplot。 model(model,res = TRUE) 颜色可从 http://colorbrewer2.org/ 中挑选。 I am fitting a model using gam from the mgcv package and store the result in model and so far I have been looking at the smooth components using plot(model). I have recently started using ggplot2 and like its output. So I am wondering, is it possible to plot these graphs using ggplot2?Here is an example:x1 = rnorm(1000)x2 = rnorm(1000)n = rpois(1000, exp(x1) + x2^2)model = gam(n ~ s(x1, k=10) + s(x2, k=20), family="poisson")plot(model, rug=FALSE, select=1)plot(model, rug=FALSE, select=2)And I am interest in s(x1, k=10) and s(x2, k=20) not in the fit.Partial answer:I dug deeper into plot.gam and mgcv:::plot.mgcv.smooth and built my own function which extracts the predicted effects and standard errors from the smooth components. It doesn't handle all options and cases of plot.gam so I only consider it a partial solution, but it works well for me.EvaluateSmooths = function(model, select=NULL, x=NULL, n=100) { if (is.null(select)) { select = 1:length(model$smooth) } do.call(rbind, lapply(select, function(i) { smooth = model$smooth[[i]] data = model$model if (is.null(x)) { min = min(data[smooth$term]) max = max(data[smooth$term]) x = seq(min, max, length=n) } if (smooth$by == "NA") { by.level = "NA" } else { by.level = smooth$by.level } range = data.frame(x=x, by=by.level) names(range) = c(smooth$term, smooth$by) mat = PredictMat(smooth, range) par = smooth$first.para:smooth$last.para y = mat %*% model$coefficients[par] se = sqrt(rowSums( (mat %*% model$Vp[par, par, drop = FALSE]) * mat )) return(data.frame( label=smooth$label , x.var=smooth$term , x.val=x , by.var=smooth$by , by.val=by.level , value = y , se = se )) }))}This returns a "molten" data frame with the smooth components, so it is now possible to use ggplot with the example above :smooths = EvaluateSmooths(model)ggplot(smooths, aes(x.val, value)) + geom_line() + geom_line(aes(y=value + 2*se), linetype="dashed") + geom_line(aes(y=value - 2*se), linetype="dashed") + facet_grid(. ~ x.var)If anyone knows a package which allows this in the general case I would be very grateful. 解决方案 You can use the visreg package combined with the plyr package. visreg basically plots any model that you can use predict() on.library(mgcv)library(visreg)library(plyr)library(ggplot2)# Estimating gam model:x1 = rnorm(1000)x2 = rnorm(1000)n = rpois(1000, exp(x1) + x2^2)model = gam(n ~ s(x1, k=10) + s(x2, k=20), family="poisson")# use plot = FALSE to get plot data from visreg without plottingplotdata <- visreg(model, type = "contrast", plot = FALSE)# The output from visreg is a list of the same length as the number of 'x' variables,# so we use ldply to pick the objects we want from the each list part and make a dataframe: smooths <- ldply(plotdata, function(part) data.frame(Variable = part$meta$x, x=part$fit[[part$meta$x]], smooth=part$fit$visregFit, lower=part$fit$visregLwr, upper=part$fit$visregUpr))# The ggplot:ggplot(smooths, aes(x, smooth)) + geom_line() + geom_line(aes(y=lower), linetype="dashed") + geom_line(aes(y=upper), linetype="dashed") + facet_grid(. ~ Variable, scales = "free_x")We can put the whole thing into a function, and add an option to show the residuals from the model (res = TRUE):ggplot.model <- function(model, type="conditional", res=FALSE, col.line="#7fc97f", col.point="#beaed4", size.line=1, size.point=1) { require(visreg) require(plyr) plotdata <- visreg(model, type = type, plot = FALSE) smooths <- ldply(plotdata, function(part) data.frame(Variable = part$meta$x, x=part$fit[[part$meta$x]], smooth=part$fit$visregFit, lower=part$fit$visregLwr, upper=part$fit$visregUpr)) residuals <- ldply(plotdata, function(part) data.frame(Variable = part$meta$x, x=part$res[[part$meta$x]], y=part$res$visregRes)) if (res) ggplot(smooths, aes(x, smooth)) + geom_line(col=col.line, size=size.line) + geom_line(aes(y=lower), linetype="dashed", col=col.line, size=size.line) + geom_line(aes(y=upper), linetype="dashed", col=col.line, size=size.line) + geom_point(data = residuals, aes(x, y), col=col.point, size=size.point) + facet_grid(. ~ Variable, scales = "free_x") else ggplot(smooths, aes(x, smooth)) + geom_line(col=col.line, size=size.line) + geom_line(aes(y=lower), linetype="dashed", col=col.line, size=size.line) + geom_line(aes(y=upper), linetype="dashed", col=col.line, size=size.line) + facet_grid(. ~ Variable, scales = "free_x") }ggplot.model(model)ggplot.model(model, res=TRUE)Colors are picked from http://colorbrewer2.org/. 这篇关于是否有可能绘制与ggplot2适合gamp平滑组件?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持! 10-30 06:14