问题描述
我遇到过许多研究出版物,Q& A在讨论检查RNN权重的必要性.一些相关的答案朝着正确的方向提出,建议get_weights()
-但是我如何真正可视化权重 ?即,LSTM和GRU具有门,所有RNN具有通道作为独立的特征提取器-因此,我如何(1)提取每门权重,然后(2)以信息方式绘制权重?
I've come across research publications and Q&A's discussing a need for inspecting RNN weights; some related answers are in the right direction, suggesting get_weights()
- but how do I actually visualize the weights meaningfully? Namely, LSTMs and GRUs have gates, and all RNNs have channels that serve as independent feature extractors - so how do I (1) fetch per-gate weights, and (2) plot them in an informative manner?
推荐答案
Keras/TF以明确定义的顺序构建RNN权重,可以从源代码或直接通过layer.__dict__
进行检查-然后将其用于获取每个内核的权重和每个门的权重;给定张量的形状,然后可以使用每通道处理.下面的代码和解释涵盖了Keras/TF RNN的所有可能的情况,并且应该可以轻松扩展到将来的任何API更改.
Keras/TF build RNN weights in a well-defined order, which can be inspected from the source code or via layer.__dict__
directly - then to be used to fetch per-kernel and per-gate weights; per-channel treatment can then be employed given a tensor's shape. Below code & explanations cover every possible case of a Keras/TF RNN, and should be easily expandable to any future API changes.
另请参阅可视化RNN梯度,以及对 RNN正则化;与前一篇文章不同,我不会在此处包括一个简化的变体,因为从重量提取和组织的本质来看,它仍然相当庞大和复杂;相反,只需在存储库中查看相关的源代码(请参阅下一节).
Also see visualizing RNN gradients, and an application to RNN regularization; unlike in the former post, I won't be including a simplified variant here, as it'd still be rather large and complex per the nature of weight extraction and organization; instead, simply view relevant source code in the repository (see next section).
代码源:请参阅RNN (该帖子包括了w /大图),我的存储库;包括:
Code source: See RNN (this post included w/ bigger images), my repository; included are:
- 激活可视化
- 重量可视化
- 激活梯度可视化
- 重量梯度可视化
- 说明所有功能的文档字符串
- 支持Eager,Graph,TF1,TF2和
from keras
&from tf.keras
- 比示例中显示的视觉自定义性更高
- Activations visualization
- Weights visualization
- Activations gradients visualization
- Weights gradients visualization
- Docstrings explaining all functionality
- Support for Eager, Graph, TF1, TF2, and
from keras
&from tf.keras
- Greater visual customizability than shown in examples
可视化方法:
- 2D热图:绘制每个门,每个内核,每个方向的重量分布; 清楚地显示了内核与隐藏的关系
- 直方图:绘制每个门,每个内核,每个方向的权重分布; 丢失上下文信息
- 2D heatmap: plot weight distributions per gate, per kernel, per direction; clearly shows kernel-to-hidden relations
- histogram: plot weight distributions per gate, per kernel, per direction; loses context info
EX 1:uni-LSTM,256个单位,重量-batch_shape = (16, 100, 20)
(输入)rnn_histogram(model, 'lstm', equate_axes=False, show_bias=False)
rnn_histogram(model, 'lstm', equate_axes=True, show_bias=False)
rnn_heatmap(model, 'lstm')
EX 1: uni-LSTM, 256 units, weights -- batch_shape = (16, 100, 20)
(input)rnn_histogram(model, 'lstm', equate_axes=False, show_bias=False)
rnn_histogram(model, 'lstm', equate_axes=True, show_bias=False)
rnn_heatmap(model, 'lstm')
- 顶部图是直方图子图网格,显示每个内核以及每个门内每个门的权重分布
- 第二个图集
equate_axes=True
用于在内核和门之间进行均匀比较,从而提高了比较质量,但可能会降低视觉吸引力 - 最后一个图是权重相同的热图,门间距用垂直线标记,并且还包括偏置权重
- 与直方图不同,热图保留通道/上下文信息:可以清楚地区分输入到隐藏和隐藏到隐藏的转换矩阵
- 请注意,在忘记"门口大量集中了最大值;作为琐事,在Keras(通常是)中,除了忘记"偏置(初始化为1)之外,所有偏置门都初始化为零.
- Top plot is a histogram subplot grid, showing weight distributions per kernel, and within each kernel, per gate
- Second plot sets
equate_axes=True
for an even comparison across kernels and gates, improving quality of comparison, but potentially degrading visual appeal - Last plot is a heatmap of the same weights, with gate separations marked by vertical lines, and bias weights also included
- Unlike histograms, the heatmap preserves channel/context information: input-to-hidden and hidden-to-hidden transforming matrices can be clearly distinguished
- Note the large concentration of maximal values at the Forget gate; as trivia, in Keras (and usually), bias gates are all initialized to zeros, except the Forget bias, which is initialized to ones
EX 2:bi-CuDNNLSTM,256单位,重量-batch_shape = (16, 100, 16)
(输入)rnn_histogram(model, 'bidir', equate_axes=2)
rnn_heatmap(model, 'bidir', norm=(-.8, .8))
EX 2: bi-CuDNNLSTM, 256 units, weights -- batch_shape = (16, 100, 16)
(input)rnn_histogram(model, 'bidir', equate_axes=2)
rnn_heatmap(model, 'bidir', norm=(-.8, .8))
- 两者均支持双向.直方图示例中包含的偏差
- 再次注意偏差热图;它们似乎不再与EX 1中位于相同的位置.实际上,
CuDNNLSTM
(和CuDNNGRU
)偏差的定义和初始化方式不同-无法从直方图推断出这一点
- Bidirectional is supported by both; biases included in this example for histograms
- Note again the bias heatmaps; they no longer appear to reside in the same locality as in EX 1. Indeed,
CuDNNLSTM
(andCuDNNGRU
) biases are defined and initialized differently - something that can't be inferred from histograms
EX 3:uni-CuDNNGRU,64个单位,权重梯度-batch_shape = (16, 100, 16)
(输入)rnn_heatmap(model, 'gru', mode='grads', input_data=x, labels=y, cmap=None, absolute_value=True)
EX 3: uni-CuDNNGRU, 64 units, weights gradients -- batch_shape = (16, 100, 16)
(input)rnn_heatmap(model, 'gru', mode='grads', input_data=x, labels=y, cmap=None, absolute_value=True)
- 我们可能希望可视化渐变强度,这可以通过
absolute_value=True
和灰度色图 完成.在此示例中,即使没有显式的分隔线, - 门分隔也是显而易见的:
-
New
是最活跃的内核门(输入到隐藏),建议对允许信息流 进行更多的纠错 -
Reset
是最不活跃的循环门(隐藏到隐藏),建议在内存保持方面的错误校正最少
- We may wish to visualize gradient intensity, which can be done via
absolute_value=True
and a greyscale colormap - Gate separations are apparent even without explicit separating lines in this example:
New
is the most active kernel gate (input-to-hidden), suggesting more error correction on permitting information flowReset
is the least active recurrent gate (hidden-to-hidden), suggesting least error correction on memory-keeping
BONUS EX:LSTM NaN检测,512个单位,重量-
batch_shape = (16, 100, 16)
(输入)- 热图和直方图都带有内置的NaN检测-内核,门和方向
- Heatmap将打印NaN到控制台,而直方图会将其直接标记在图上
- 两者都将在绘制之前将NaN值设置为零;在下面的示例中,所有相关的非NaN权重已经为零
这篇关于如何在Keras/TensorFlow中可视化RNN/LSTM权重?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!
-