问题描述
是否有一种方法可以重塑张量并用零填充任何溢出?我知道ndarray.reshape可以做到这一点,但据我所知,将Tensor转换为ndarray将需要GPU和CPU之间的触发器.
Is there a way to reshape a tensor and pad any overflow with zeros? I know ndarray.reshape does this, but as I understand it, converting a Tensor to an ndarray would require flip-flopping between the GPU and CPU.
Tensorflow的reshape()文档说TensorShapes需要具有相同数量的元素,所以也许最好的方法是先先pad()然后再reshape()?
Tensorflow's reshape() documentation says the TensorShapes need to have the same number of elements, so perhaps the best way would be a pad() and then reshape()?
我正在努力实现:
a = tf.Tensor([[1,2],[3,4]])
tf.reshape(a, [2,3])
a => [[1, 2, 3],
[4, 0 ,0]]
推荐答案
Tensorflow现在提供pad函数,该函数可以通过多种方式对张量执行填充(如opencv2的数组的padding函数): https://www.tensorflow.org/api_docs/python/tf/pad
Tensorflow now offers the pad function which performs padding on a tensor in a number of ways(like opencv2's padding function for arrays):https://www.tensorflow.org/api_docs/python/tf/pad
tf.pad(tensor, paddings, mode='CONSTANT', name=None)
上述文档中的示例:
# 't' is [[1, 2, 3], [4, 5, 6]].
# 'paddings' is [[1, 1,], [2, 2]].
# rank of 't' is 2.
pad(t, paddings, "CONSTANT") ==> [[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 2, 3, 0, 0],
[0, 0, 4, 5, 6, 0, 0],
[0, 0, 0, 0, 0, 0, 0]]
pad(t, paddings, "REFLECT") ==> [[6, 5, 4, 5, 6, 5, 4],
[3, 2, 1, 2, 3, 2, 1],
[6, 5, 4, 5, 6, 5, 4],
[3, 2, 1, 2, 3, 2, 1]]
pad(t, paddings, "SYMMETRIC") ==> [[2, 1, 1, 2, 3, 3, 2],
[2, 1, 1, 2, 3, 3, 2],
[5, 4, 4, 5, 6, 6, 5],
[5, 4, 4, 5, 6, 6, 5]]
这篇关于Tensorflow Tensor重塑和填充零的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!