少废话,先上效果图
屏幕显示效果
全家福
观看演示效果:
https://www.bilibili.com/video/BV13V411b78V
一、基础认识及引脚介绍
屏幕参数:
尺寸:0.96英寸
分辨率:128*64
驱动芯片:SSD1306
驱动接口协议:SPI
引脚说明:
二、 SSD1306芯片介绍
SSD1306是一款带控制器的用于OLED点阵图形显示系统的单片CMOS OLED/PLED驱动器。它由128个SEG(列输出)和64个COM(行输出)组成。
SSD1306嵌入了对比度控制器、显示RAM和振荡器,从而减少了外部组件的数量和功耗。它有256级亮度控制。数据/命令可以通用硬件选择3种通信方式:6800/8000串口、IIC接口和SPI接口。适用于手机子显示器、MP3播放器、计算器等多种便携应用。
模块有多种通信方式,包括串口、IIC、SPI,其选择通过硬件固化,如果使用IIC通信方式时可以选择两个IIC地址,其分别为0x78和0x7A。
三、 通信方式(4线SPI)
所谓的4线SPI并非是收发一体的标准4线SPI协议,标准的4线SPI为SCLK、CS、MOSI、MISO,模块所述大的4线SPI是单向的,即MISO(主入从出)变成了D/C(数据命令选择脚)。
该4线串行接口由串行时钟SCLK、串行数据SDIN、数据命令选择线D/C#、片选信号CS#组成.在四线SPI模式下,D0为SCLK,D1为SDIN。
其真实使用的是标准的3线SPI,也就是省略了MISO(主入从出)数据线。
数据命令选择:DC为高时表示数据,DC为低时表示写命令
片选:CS脚为低电平是选中,如果不通信时将脚输出高电平
数据通信:在SCLK的每一个上升边上,SDIN按D7,D6,…D0,高位先写出
通信时序图
四、编程(CubeMX部分)
(一) CubeMX基础配置
选择芯片(STM32F103C8T6)
打开外部的高速和低速晶振
所占用的引脚
开启SWD调试
所占用的引脚
时钟树设置
设置系统时钟为最高速度,72MHZ
(二) GPIO初始化
初始化电平分析
D0:SCLK,时钟线,上升沿有效,所以默认输出高电平
D1:SDIN,数据线,默认输出电平随意
RST:复位脚,低电平复位,默认电平为低
DC:数据/命令选择脚,默认输出电平随意
CS:片选引脚,默认输出高电平
引脚选择
使用单片机是STM32F103C8T6
考虑到已经使用的IO和硬件上的布局,最好是将一个模块的相关线放在一起,所以选择如下接线方式:
D0 ----> B5
D1 ----> B6
RST ----> B7
DC ----> B8
CS ----> B9
(三) CubeMX GPIO配置
所使用的IO
(四) 整体配置图
五、 编程(程序部分)
(一) 分析原理
有IIC通信方式为什么要有SPI,我看可以简单对比一下:
IIC通信方式:两条数据线,通信数据较慢
SPI通信方式:四条数据线,通信数据脚快
这就看项目需要,如果需要刷屏速度的话当然选用SPI方式优秀
在此之前要知道,OLED SPI通信中不需要单片机读取OLED模块的任何数据,所以单片机按照一定的规则向SPI线上写数据就可以了。在通信中单片机充当SPI的主机,OLED模块为SPI的从机。因为主机不需要接收从机数据,所以标准的四线SPI中MISO线就没必要存在了。通信使用的是标准的三线SPI,即CS、CLK、MOSI。
根据这个时序图就可以了解如何变成,在CS为低电平时就是芯片通信启动;D/C是数据或者命令的选择,也就是主机拉高拉低可以控制写的数据是指令还是数据;SCLK(D0)是时钟引脚,MOSI (D1 SDIN)为数据已经。当SCLK上升沿的瞬间,从机将会读取MOSI上的电平。发送一个字节时,是高位在前低位在后的。
所以发送一个字节大的函数,这实现了单向的数据传输SPI
实现步骤:
l 先保证时钟线默认为低电平
l 循环发送8位数据,发送最高位数据:
| 设置时钟线为低电平
| 判断发送的数据是1还是0,1则发送高电平,0则低低电平
| 设置时钟线为高电平(此时有上升沿)
l 数据左移一位,让次高位在最高位上
l 循环发送8位数据,发送次高位数据:
| 设置时钟线为低电平
| 判断发送的数据是1还是0,1则发送高电平,0则低低电平
| 设置时钟线为高电平(此时有上升沿)
l 数据左移一位,……
l ……
l 保证时钟线最终为高电平
代码,需要交流可加本人微信,见文章结尾
数据和命令分发:
OLED SPI方式为了更快的数据交互,有一个专门的引脚作为数据和命令选择脚,而IIC还要靠发送数据去做判断,可想而知他们的速率会有相差。
D/C引脚就是数据/命令选择,低电平写命令,高电平写数据
设计思路:
l 如果是命令,则拉高DC引脚
l 如果不是命令,则拉低DC引脚
l CS引脚拉低表示选中从机,开启通信
l 发送一个数据,则调用了前面的标准3线SPI通信函数
l 拉高DC引脚
l 拉高CS引脚,关闭通信
代码,需要交流可加本人微信,见文章结尾
六、OLED进阶版及曲线显示
(一)驱动分析
想要了解OLED显示曲线就必须了解其显示本质,更加底层细致的分析寄存器及显示原理。
0.96寸的12864 OLED屏幕由128*64个发光二极管组成。
这是数据手册的截图
注意图总的黑色和绿色,它只是告诉你可以反向,也就是0编号的位置可以换成127编号而已。
由此可见屏幕总共分为8页(page),每页占用Y轴的8行发光二极管和X轴的128个发光二极管,所以一页总共占用8*128=1024个发光二极管。
所以在真实的图中表示:
这是数据手册中其中一页的表示
这是基于没有做反转时的介绍,如果反转了就不是这样了。反转是在程序初始化是调用的,后面分析的初始化函数有介绍
其中“Each lattice represents one bit of image data”的翻译是“每个格子代表一个图像数据位”,因为一页刚好8个Y方向的各种,对应的刚好是U8类型,所以我们通常用一个U8表示一页里的一个列的显示,一页中共有128个列,所以一页总共需要1*128=128个U8类型数据。并且从图中可以看出,最下面的是最高位。
举个栗子:
假如我们拿第二页的第一列来说,其值的二进制为11110000,其实点亮的是如下图的红色部分。
这也就说明高位点亮的是下面的位置。
(二)初始化函数及逐条分析
1 void my_oled_init(){ 2 my_oled_rst(); 3 my_oled_write_byte(0xAE,OLED_CMD);//关闭显示 4 5 my_oled_write_byte(0x00,OLED_CMD);//X轴低位,起始X轴为0 6 my_oled_write_byte(0x10,OLED_CMD);//X轴高位 7 my_oled_write_byte(0x40,OLED_CMD);//Y轴,可设区间[0x40,0x7F],设置为0了 8 9 10 my_oled_write_byte(0xA1,OLED_CMD);//设置X轴扫描方向,0xa0左右反置 ,0xa1正常(左边为0列) 11 my_oled_write_byte(0xC8,OLED_CMD);//设置Y轴扫描方向,0xc0上下反置 ,0xc8正常(上边为0行) 12 my_oled_write_byte(0xA6,OLED_CMD);//位值表示的意义,0xa6表示正常,1为点亮,0为关闭,0xa7显示效果相反 13 14 15 my_oled_write_byte(0x81,OLED_CMD);//命令头,调节亮度,对比度,变化很小,但是仔细可以观察出来 16 my_oled_write_byte(0xFF,OLED_CMD);//可设置区间[0x00,0xFF] 17 18 my_oled_write_byte(0xA8,OLED_CMD);//命令头,设置多路复用率(1 to 64) 19 my_oled_write_byte(0x3f,OLED_CMD);//--1/64 duty 20 21 my_oled_write_byte(0xD3,OLED_CMD);//命令头,设置显示偏移移位映射RAM计数器(0x00~0x3F) 22 my_oled_write_byte(0x00,OLED_CMD);//不偏移 23 24 my_oled_write_byte(0xd5,OLED_CMD);//命令头,设置显示时钟分频比/振荡器频率 25 my_oled_write_byte(0x80,OLED_CMD);//设置分割比率,设置时钟为100帧/秒 26 27 my_oled_write_byte(0xD9,OLED_CMD);//命令头,--set pre-charge period 28 my_oled_write_byte(0xF1,OLED_CMD);//Set Pre-Charge as 15 Clocks & Discharge as 1 Clock 29 30 my_oled_write_byte(0xDA,OLED_CMD);//命令头,--set com pins hardware configuration 31 my_oled_write_byte(0x12,OLED_CMD); 32 33 my_oled_write_byte(0xDB,OLED_CMD);//命令头,--set vcomh 34 my_oled_write_byte(0x40,OLED_CMD);//Set VCOM Deselect Level 35 36 my_oled_write_byte(0x20,OLED_CMD);//命令头,设置寻址模式 37 my_oled_write_byte(0x10,OLED_CMD);//页面寻址模式(重置) (0x00/0x01/0x02) 38 39 my_oled_write_byte(0x8D,OLED_CMD);//命令头,--set Charge Pump enable/disable 40 my_oled_write_byte(0x14,OLED_CMD);//--set(0x10) disable 41 42 my_oled_write_byte(0xA4,OLED_CMD);//恢复到RAM内容显示(重置) 43 44 my_oled_clear();//清屏 45 46 my_oled_write_byte(0xAF,OLED_CMD); //开启显示 47 48 }
局部分析:
设置寻址模式
A[1:0] = 00b,水平寻址模式
A[1:0] = 01b,垂直寻址模式
A[1:0] = 10b,页面寻址模式(重置)
A[1:0] = 11b,无效
00b,水平寻址模式
01b,垂直寻址模式
10b,页面寻址模式
寻址模式对应着我们的取模:
我们取模软件设置的刷新方式:
从左到右从上到下:对应了页面寻址模式
纵向8点下高位:纵向右8个点,最下面的点为最高位
其它相关逐条分析内容,可加本人微信获取,见文末
(三) 寄存器配置补充(详细)
需要资料可加本人微信,见文末
观看演示效果:https://www.bilibili.com/video/BV13V411b78V
原文链接:https://www.cnblogs.com/dongxiaodong/p/14321569.html
如需资料可加本人微信
微信号:dongxiaodongwx