本文介绍了Pascal的Python三角形的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

作为Python的学习经验,我正在尝试编写自己版本的Pascal三角形.我花了几个小时(因为我才刚刚开始),但是我想到了以下代码:

As a learning experience for Python, I am trying to code my own version of Pascal's triangle. It took me a few hours (as I am just starting), but I came out with this code:

pascals_triangle = []

def blank_list_gen(x):
    while len(pascals_triangle) < x:
        pascals_triangle.append([0])

def pascals_tri_gen(rows):
    blank_list_gen(rows)
    for element in range(rows):
        count = 1
        while count < rows - element:
            pascals_triangle[count + element].append(0)
            count += 1
    for row in pascals_triangle:
        row.insert(0, 1)
        row.append(1)
    pascals_triangle.insert(0, [1, 1])
    pascals_triangle.insert(0, [1])

pascals_tri_gen(6)

for row in pascals_triangle:
    print(row)

返回

[1]
[1, 1]
[1, 0, 1]
[1, 0, 0, 1]
[1, 0, 0, 0, 1]
[1, 0, 0, 0, 0, 1]
[1, 0, 0, 0, 0, 0, 1]
[1, 0, 0, 0, 0, 0, 0, 1]

但是,我不知道从这里去哪里.我已经把头撞在墙上好几个小时了.我想强调,我不希望你为我做这件事;推动我朝正确的方向前进.作为清单,我的代码返回

However, I have no idea where to go from here. I have been banging my head against the wall for hours. I want to emphasize that I do NOT want you to do it for me; just push me in the right direction. As a list, my code returns

[[1], [1, 1], [1, 0, 1], [1, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 1]]

谢谢.

我采纳了一些很好的建议,并且完全重写了我的代码,但是现在遇到了另一个问题.这是我的代码.

I took some good advice, and I completely rewrote my code, but I am now running into another problem. Here is my code.

import math

pascals_tri_formula = []

def combination(n, r):
    return int((math.factorial(n)) / ((math.factorial(r)) * math.factorial(n - r)))

def for_test(x, y):
    for y in range(x):
        return combination(x, y)

def pascals_triangle(rows):
    count = 0
    while count <= rows:
        for element in range(count + 1):
            [pascals_tri_formula.append(combination(count, element))]
        count += 1

pascals_triangle(3)

print(pascals_tri_formula)

但是,我发现输出有点令人讨厌:

However, I am finding that the output is a bit undesirable:

[1, 1, 1, 1, 2, 1, 1, 3, 3, 1]

我该如何解决?

推荐答案

确定代码审查:

import math

# pascals_tri_formula = [] # don't collect in a global variable.

def combination(n, r): # correct calculation of combinations, n choose k
    return int((math.factorial(n)) / ((math.factorial(r)) * math.factorial(n - r)))

def for_test(x, y): # don't see where this is being used...
    for y in range(x):
        return combination(x, y)

def pascals_triangle(rows):
    result = [] # need something to collect our results in
    # count = 0 # avoidable! better to use a for loop,
    # while count <= rows: # can avoid initializing and incrementing
    for count in range(rows): # start at 0, up to but not including rows number.
        # this is really where you went wrong:
        row = [] # need a row element to collect the row in
        for element in range(count + 1):
            # putting this in a list doesn't do anything.
            # [pascals_tri_formula.append(combination(count, element))]
            row.append(combination(count, element))
        result.append(row)
        # count += 1 # avoidable
    return result

# now we can print a result:
for row in pascals_triangle(3):
    print(row)

打印:

[1]
[1, 1]
[1, 2, 1]


帕斯卡三角形的解释:

这是"n选择k" 的公式(例如,有多少种不同的方式(不考虑订单),从n项的有序列表中,我们可以选择k项):


Explanation of Pascal's triangle:

This is the formula for "n choose k" (i.e. how many different ways (disregarding order), from an ordered list of n items, can we choose k items):

from math import factorial

def combination(n, k):
    """n choose k, returns int"""
    return int((factorial(n)) / ((factorial(k)) * factorial(n - k)))

一个评论者询问这是否与itertools.combinations有关-确实如此.可以通过从组合中获取元素列表的长度来计算"n选择k":

A commenter asked if this is related to itertools.combinations - indeed it is. "n choose k" can be calculated by taking the length of a list of elements from combinations:

from itertools import combinations

def pascals_triangle_cell(n, k):
    """n choose k, returns int"""
    result = len(list(combinations(range(n), k)))
    # our result is equal to that returned by the other combination calculation:
    assert result == combination(n, k)
    return result

让我们看看这个演示:

from pprint import pprint

ptc = pascals_triangle_cell

>>> pprint([[ptc(0, 0),],
            [ptc(1, 0), ptc(1, 1)],
            [ptc(2, 0), ptc(2, 1), ptc(2, 2)],
            [ptc(3, 0), ptc(3, 1), ptc(3, 2), ptc(3, 3)],
            [ptc(4, 0), ptc(4, 1), ptc(4, 2), ptc(4, 3), ptc(4, 4)]],
           width = 20)
[[1],
 [1, 1],
 [1, 2, 1],
 [1, 3, 3, 1],
 [1, 4, 6, 4, 1]]

我们可以避免使用嵌套列表理解来重复自己:

We can avoid repeating ourselves with a nested list comprehension:

def pascals_triangle(rows):
    return [[ptc(row, k) for k in range(row + 1)] for row in range(rows)]

>>> pprint(pascals_triangle(15))
[[1],
 [1, 1],
 [1, 2, 1],
 [1, 3, 3, 1],
 [1, 4, 6, 4, 1],
 [1, 5, 10, 10, 5, 1],
 [1, 6, 15, 20, 15, 6, 1],
 [1, 7, 21, 35, 35, 21, 7, 1],
 [1, 8, 28, 56, 70, 56, 28, 8, 1],
 [1, 9, 36, 84, 126, 126, 84, 36, 9, 1],
 [1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1],
 [1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1],
 [1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1],
 [1, 13, 78, 286, 715, 1287, 1716, 1716, 1287, 715, 286, 78, 13, 1],
 [1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1]]

递归定义:

我们可以使用三角形所示的关系来递归定义(效率较低,但数学上可能更优雅的定义):

Recursively defined:

We can define this recursively (a less efficient, but perhaps more mathematically elegant definition) using the relationships illustrated by the triangle:

 def choose(n, k): # note no dependencies on any of the prior code
     if k in (0, n):
         return 1
     return choose(n-1, k-1) + choose(n-1, k)

有趣的是,您可以看到每一行的执行时间逐渐变长,因为每一行必须重新计算上一行中的几乎每个元素两次:

And for fun, you can see each row take progressively longer to execute, because each row has to recompute nearly each element from the prior row twice each time:

for row in range(40):
    for k in range(row + 1):
        # flush is a Python 3 only argument, you can leave it out,
        # but it lets us see each element print as it finishes calculating
        print(choose(row, k), end=' ', flush=True)
    print()


1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1
1 12 66 220 495 792 924 792 495 220 66 12 1
1 13 78 286 715 1287 1716 1716 1287 715 286 78 13 1
1 14 91 364 1001 2002 3003 3432 3003 2002 1001 364 91 14 1
1 15 105 455 1365 3003 5005 6435 6435 5005 3003 1365 455 105 15 1
1 16 120 560 1820 4368 8008 11440 12870 11440 8008 4368 1820 560 120 16 1
1 17 136 680 2380 6188 12376 19448 24310 24310 19448 12376 6188 2380 680 136 17 1
1 18 153 816 3060 8568 18564 31824 43758 48620 43758 31824 18564 8568 3060 816 ...

当您厌倦了观看时,Ctrl-C退出,它变得非常慢非常快...

Ctrl-C to quit when you get tired of watching it, it gets very slow very fast...

这篇关于Pascal的Python三角形的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-03 02:46