问题描述
我将RandomForestClassifier()
与10 fold cross validation
一起使用,如下所示.
I am using RandomForestClassifier()
with 10 fold cross validation
as follows.
clf=RandomForestClassifier(random_state = 42, class_weight="balanced")
k_fold = StratifiedKFold(n_splits=10, shuffle=True, random_state=42)
accuracy = cross_val_score(clf, X, y, cv=k_fold, scoring = 'accuracy')
print(accuracy.mean())
我想确定特征空间中的重要特征.如下所述,获得单一分类的特征重要性似乎很简单.
I want to identify the important features in my feature space. It seems to be straightforward to get the feature importance for single classification as follows.
print("Features sorted by their score:")
feature_importances = pd.DataFrame(clf.feature_importances_,
index = X_train.columns,
columns=['importance']).sort_values('importance', ascending=False)
print(feature_importances)
但是,我找不到如何在sklearn中为cross validation
执行feature importance
的操作.
However, I could not find how to perform feature importance
for cross validation
in sklearn.
总而言之,我想确定10倍交叉验证中最有效的功能(例如,使用average importance score
).
In summary, I want to identify the most effective features (e.g., by using an average importance score
) in the 10-folds of cross validation.
如果需要,我很乐意提供更多详细信息.
I am happy to provide more details if needed.
推荐答案
cross_val_score()
不会针对火车测试折叠的每种组合返回估算器.
cross_val_score()
does not return the estimators for each combination of train-test folds.
您需要使用 cross_validate()
并设置return_estimator =True
.
这是一个可行的示例:
from sklearn import datasets
from sklearn.model_selection import cross_validate
from sklearn.svm import LinearSVC
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
diabetes = datasets.load_diabetes()
X, y = diabetes.data, diabetes.target
clf=RandomForestClassifier(n_estimators =10, random_state = 42, class_weight="balanced")
output = cross_validate(clf, X, y, cv=2, scoring = 'accuracy', return_estimator =True)
for idx,estimator in enumerate(output['estimator']):
print("Features sorted by their score for estimator {}:".format(idx))
feature_importances = pd.DataFrame(estimator.feature_importances_,
index = diabetes.feature_names,
columns=['importance']).sort_values('importance', ascending=False)
print(feature_importances)
输出:
Features sorted by their score for estimator 0:
importance
s6 0.137735
age 0.130152
s5 0.114561
s2 0.113683
s3 0.112952
bmi 0.111057
bp 0.108682
s1 0.090763
s4 0.056805
sex 0.023609
Features sorted by their score for estimator 1:
importance
age 0.129671
bmi 0.125706
s2 0.125304
s1 0.113903
bp 0.111979
s6 0.110505
s5 0.106099
s3 0.098392
s4 0.054542
sex 0.023900
这篇关于如何在sklearn中的每个交叉验证模型中计算特征重要性的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!