本文介绍了使用 purrr 在混合数据上运行多个 glm 模型的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
假设我们有一个玩具数据集:
Suppose we have a toy data set:
library(tidyverse)
library(purrr)
tbl <- tibble(a = rep(c(0, 1), each = 5),
b = rep(c(0, 1), times = 5),
c = runif(10),
d = rexp(10)) %>%
mutate_at(vars(1,2), as.factor)
其中 a
是因变量,b:d
是自变量.这个想法是为每个自变量运行 glm
模型:
where a
is a dependent variable and b:d
are independent variables. The idea is to run glm
model for each independent variable:
glm(a ~ b, data = tbl, family = "binomial")
glm(a ~ c, data = tbl, family = "binomial")
glm(a ~ d, data = tbl, family = "binomial")
我最初的尝试如下:
tbl %>%
pivot_longer(2:4, names_to = "key", values_to = "val") %>%
group_split(key) %>%
map(~ glm(a ~ val, data = .x, family = "binomial"))
这导致了错误,因为b
和c
(或d
)的数据类型不同.
This resulted in an error because data types of b
and c
(or d
) are not the same.
Error: No common type for `b` <factor<dec08>> and `c` <double>.
我想知道如何解决这个问题.
I wonder how to address this issue.
推荐答案
无需整形,我们可以使用map
将glm
应用到各种自变量上,使用重新制定
以创建如下公式:
Without reshaping, we can use map
to apply glm
to various independent variables and use reformulate
to create the formula like :
purrr::map(names(tbl)[-1],~glm(reformulate(.x, 'a'),data = tbl,family = 'binomial'))
#[[1]]
#Call: glm(formula = reformulate(.x, "a"), family = "binomial", data = tbl)
#Coefficients:
#(Intercept) b1
# -0.4055 0.8109
#Degrees of Freedom: 9 Total (i.e. Null); 8 Residual
#Null Deviance: 13.86
#Residual Deviance: 13.46 AIC: 17.46
#...
#...
这篇关于使用 purrr 在混合数据上运行多个 glm 模型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!