本文介绍了计算每个组的等级的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有一个带有类型和值的df
.我想在type
中以x
的顺序对它们进行排名,并计算出n
行中的x
值比(clumn pos
)值高的其他行数.
I have a df
with types and values. I want to rank them in order of x
within type
and give a count of how many other rows row n
has higher value of x
than (column pos
).
例如
df <- data.frame(type = c("a","a","a","b","b","b"),x=c(1,77,1,34,1,8))
# for type a row 3 has a higher x than row 1 and 2 so has a pos value of 2
我可以这样:
library(plyr)
df <- data.frame(type = c("a","a","a","b","b","b"),x=c(1,77,1,34,1,8))
df <- ddply(df,.(type), function(x) x[with(x, order(x)) ,])
df <- ddply(df,.(type), transform, pos = (seq_along(x)-1) )
type x pos
1 a 1 0
2 a 1 1
3 a 77 2
4 b 1 0
5 b 8 1
6 b 34 2
但是这种方法没有考虑类型a
第1行和第2行之间的联系.在联系具有例如相同值的情况下,获得输出的最简单方法是什么.
But this approach does not take into account ties between type a
row 1 and 2. Whats the easiest way to get the output where ties have the same value e.g.
type x pos
1 a 1 0
2 a 1 0
3 a 77 2
4 b 1 0
5 b 8 1
6 b 34 2
推荐答案
ddply(df,.(type), transform, pos = rank(x,ties.method ="min")-1)
type x pos
1 a 1 0
2 a 77 2
3 a 1 0
4 b 34 2
5 b 1 0
6 b 8 1
这篇关于计算每个组的等级的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!