本文介绍了行的min()和max()对于具有NaN的列失败的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我正在尝试获取包含日期的两列的按行最大值(和最小值)
I am trying to take the rowwise max (and min) of two columns containing dates
from datetime import date
import pandas as pd
import numpy as np
df = pd.DataFrame({'date_a' : [date(2015, 1, 1), date(2012, 6, 1),
date(2013, 1, 1), date(2016, 6, 1)],
'date_b' : [date(2012, 7, 1), date(2013, 1, 1),
date(2014, 3, 1), date(2013, 4, 1)]})
df[['date_a', 'date_b']].max(axis=1)
Out[46]:
0 2015-01-01
1 2013-01-01
2 2014-03-01
3 2016-06-01
符合预期.但是,如果数据帧包含单个NaN值,则整个操作将失败
as expected. However, if the dataframe contains a single NaN value, the whole operation fails
df_nan = pd.DataFrame({'date_a' : [date(2015, 1, 1), date(2012, 6, 1),
np.NaN, date(2016, 6, 1)],
'date_b' : [date(2012, 7, 1), date(2013, 1, 1),
date(2014, 3, 1), date(2013, 4, 1)]})
df_nan[['date_a', 'date_b']].max(axis=1)
Out[49]:
0 NaN
1 NaN
2 NaN
3 NaN
dtype: float64
这是怎么回事?我期待这个结果
What is going on here? I was expecting this result
0 2015-01-01
1 2013-01-01
2 NaN
3 2016-06-01
如何实现?
推荐答案
我会说最好的解决方案是使用适当的dtype
.熊猫提供了很好集成的datetime
dtype
.因此请注意,您正在使用object
dtypes ...
I would say the best solution is to use the appropriate dtype
. Pandas provides a very well integrated datetime
dtype
. So note, you are using object
dtypes...
>>> df
date_a date_b
0 2015-01-01 2012-07-01
1 2012-06-01 2013-01-01
2 NaN 2014-03-01
3 2016-06-01 2013-04-01
>>> df.dtypes
date_a object
date_b object
dtype: object
但是请注意,当您使用
>>> df2 = df.apply(pd.to_datetime)
>>> df2
date_a date_b
0 2015-01-01 2012-07-01
1 2012-06-01 2013-01-01
2 NaT 2014-03-01
3 2016-06-01 2013-04-01
>>> df2.min(axis=1)
0 2012-07-01
1 2012-06-01
2 2014-03-01
3 2013-04-01
dtype: datetime64[ns]
这篇关于行的min()和max()对于具有NaN的列失败的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!