本文介绍了无法在 tensorflow v0.8 中恢复模型的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我正在尝试恢复已保存的模型.但它返回给我一个错误.请帮帮我.保存模型的代码:save_model.py

I am trying to restore a saved model . But it is returning me an error. Please help me out.code to save the model : save_model.py

import tensorflow as tf
v1 = tf.Variable(1.32, name="v1")
v2 = tf.Variable(1.33, name="v2")

init = tf.initialize_all_variables()

saver = tf.train.Saver()

with tf.Session() as sess:
  sess.run(init)
  save_path = saver.save(sess, "model.ckpt")

恢复模型的代码:restore_model.py

import tensorflow as tf
v1 = tf.Variable(0, name="v1")
v2 = tf.Variable(0, name="v2")


saver = tf.train.Saver()

with tf.Session() as sess:
  saver.restore(sess, "model.ckpt")
  print("Model restored.")

我已将两个文件保存在同一目录中.

I have saved both the files in the same directory.

推荐答案

我怀疑错误是因为在 save_model.py 中你声明变量为 tf.float32 类型code>(1.321.33 的隐式类型),而在 restore_model.py 中,您将变量定义为具有 tf.int32(0 的隐式类型).

I suspect the error is raised because in save_model.py you declare the variables as having type tf.float32 (the implicit type of 1.32 and 1.33), whereas in restore_model.py you define the variables as having type tf.int32 (the implicit type of 0).

最简单的解决方案是修改 restore_model.py 以将变量声明为 tf.float32.例如,您可以执行以下操作:

The easiest solution would be to modify restore_model.py to declare the variables as tf.float32. For example, you could do the following:

v1 = tf.Variable(0.0, name="v1")
v2 = tf.Variable(0.0, name="v2")

这篇关于无法在 tensorflow v0.8 中恢复模型的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-05 10:00
查看更多