本文介绍了使用其他三个给定变量对两个同时变量进行迭代或逐行滚动计算的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

名为 crass 的数据集看起来像-

The dataset named crass looks like -

> dput(crass)
structure(list(WT_TRADE_PRICE = c(3801, 3801, 3801, 3797, 3797,
3796.2125, 3800, 3797, 3795.09523809524, 3794, 3793, 3793, 3793.8,
3794.72, 3793.02777777778, 3789, 3790, 3788, 3788, 3788), min = c(3801,
3801, 3801, 3797, 3797, 3795, 3800, 3797, 3794, 3794, 3793, 3793,
3793, 3794, 3790, 3789, 3790, 3788, 3788, 3788), max = c(3801,
3801, 3801, 3797, 3797, 3800, 3800, 3797, 3797, 3794, 3793, 3793,
3794, 3797, 3794, 3789, 3790, 3788, 3788, 3788), Bid = c(3801,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA), Ask = c(3802, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA)), row.names = c(NA, -20L
), class = c("tbl_df", "tbl", "data.frame"))
# A tibble: 20 x 5
   WT_TRADE_PRICE   min   max   Bid   Ask
            <dbl> <dbl> <dbl> <dbl> <dbl>
 1          3801   3801  3801  3801  3802
 2          3801   3801  3801    NA    NA
 3          3801   3801  3801    NA    NA
 4          3797   3797  3797    NA    NA
 5          3797   3797  3797    NA    NA
 6          3796.  3795  3800    NA    NA
 7          3800   3800  3800    NA    NA
 8          3797   3797  3797    NA    NA
 9          3795.  3794  3797    NA    NA
10          3794   3794  3794    NA    NA
11          3793   3793  3793    NA    NA
12          3793   3793  3793    NA    NA
13          3794.  3793  3794    NA    NA
14          3795.  3794  3797    NA    NA
15          3793.  3790  3794    NA    NA
16          3789   3789  3789    NA    NA
17          3790   3790  3790    NA    NA
18          3788   3788  3788    NA    NA
19          3788   3788  3788    NA    NA
20          3788   3788  3788    NA    NA

可以看出,两个变量 ask & bid 仅具有需要使用以下逻辑迭代填充的初始值.

As can be seen, two variables ask & bid have only initial values which need to be filled iteratively using the following logic.

  • 如果 WT_TRDAE_PRICE Ask OR WT_TRADE_PRICE 的先前值> = >将检查是否> 比先前的 bid ask 的平均值-然后将当前的 ask 设置为相等当前行的 max 变量和 bid 设置为等于先前的 bid 值.
  • 否则,当前 ask 将设置为先前的 ask 值& bid max .
  • If WT_TRDAE_PRICE is >= than previous value of Ask OR WT_TRADE_PRICE will be checked whether > than mean of previous bid and ask - then current ask will be set equal to current row max variable and bid will be set equal to previous bid value.
  • Else , current ask will be set to previous ask value & bid to max.

伪代码-

if(WT_TRADE_PRICE >= L(Ask) | WT_TRADE_PRICE > (L(Bid)+L(Ask))/2)
{
  Bid = L(Bid), Ask = max
}
else
{
  Bid = min, Ask = L(Ask)
}

最终输出-

1 3801 3801 3801 3801 3802
2 3801 3801 3801 3801 3802
3 3801 3801 3801 3801 3802
4 3797 3797 3797 3797 3802
5 3797 3797 3797 3797 3802
6 3796. 3795 3800 3795 3802
7 3800 3800 3800 3795 3800
8 3797 3797 3797 3797 3800
9 3795. 3794 3797 3794 3800
10 3794 3794 3794 3794 3800
11 3793 3793 3793 3793 3800
12 3793 3793 3793 3793 3800
13 3794. 3793 3794 3793 3800
14 3795. 3794 3797 3793 3797
15 3793. 3790 3794 3790 3797
16 3789 3789 3789 3789 3797
17 3790 3790 3790 3790 3797
18 3788 3788 3788 3788 3797
19 3788 3788 3788 3788 3797
20 3788 3788 3788 3788 3797

推荐答案

进一步编辑

根据请求,我尝试使用 purrr 样式的语法,该样式现在应该可以达到目的并且也应该很快

As per request I tries a purrr style of syntax which should now serve the purpose and should be fast too

crass[1:3] %>%
  nest_by(id = row_number()) %>%
  ungroup() %>%
  mutate(new = accumulate(data,
                          .init = list(Bid = 3801, Ask = 3802),
                          ~ tibble(Bid = ifelse(.y$WT_TRADE_PRICE >= min(.x$Ask, (.x$Ask + .x$Bid)/2),
                                                     .x$Bid,
                                                     .y$min),
                                        Ask = ifelse(.y$WT_TRADE_PRICE >= min(.x$Ask, (.x$Ask + .x$Bid)/2),
                                                     .y$max,
                                                     .x$Ask))
                          )[-1]) %>%
  unnest_wider(data) %>%
  unnest_wider(new)

# A tibble: 20 x 6
      id WT_TRADE_PRICE   min   max   Bid   Ask
   <int>          <dbl> <dbl> <dbl> <dbl> <dbl>
 1     1          3801   3801  3801  3801  3802
 2     2          3801   3801  3801  3801  3802
 3     3          3801   3801  3801  3801  3802
 4     4          3797   3797  3797  3797  3802
 5     5          3797   3797  3797  3797  3802
 6     6          3796.  3795  3800  3795  3802
 7     7          3800   3800  3800  3795  3800
 8     8          3797   3797  3797  3797  3800
 9     9          3795.  3794  3797  3794  3800
10    10          3794   3794  3794  3794  3800
11    11          3793   3793  3793  3793  3800
12    12          3793   3793  3793  3793  3800
13    13          3794.  3793  3794  3793  3800
14    14          3795.  3794  3797  3794  3800
15    15          3793.  3790  3794  3790  3800
16    16          3789   3789  3789  3789  3800
17    17          3790   3790  3790  3790  3800
18    18          3788   3788  3788  3788  3800
19    19          3788   3788  3788  3788  3800
20    20          3788   3788  3788  3788  3800

为循环修改的更早版本


for(i in 2:nrow(crass)){
    if(crass[i, 1] >= min(crass[i-1, 5], (crass[i-1, 4] + crass[i-1, 5])/2)){
    crass[i, 5] <- crass[i, 3]
    crass[i, 4] <- crass[i-1, 4]
  } else {
    crass[i, 4] <- crass[i, 2]
    crass[i, 5] <- crass[i-1, 5]
  }
}

crass
# A tibble: 20 x 5
   WT_TRADE_PRICE   min   max   Bid   Ask
            <dbl> <dbl> <dbl> <dbl> <dbl>
 1          3801   3801  3801  3801  3802
 2          3801   3801  3801  3801  3802
 3          3801   3801  3801  3801  3802
 4          3797   3797  3797  3797  3802
 5          3797   3797  3797  3797  3802
 6          3796.  3795  3800  3795  3802
 7          3800   3800  3800  3795  3800
 8          3797   3797  3797  3797  3800
 9          3795.  3794  3797  3794  3800
10          3794   3794  3794  3794  3800
11          3793   3793  3793  3793  3800
12          3793   3793  3793  3793  3800
13          3794.  3793  3794  3793  3800
14          3795.  3794  3797  3794  3800
15          3793.  3790  3794  3790  3800
16          3789   3789  3789  3789  3800
17          3790   3790  3790  3790  3800
18          3788   3788  3788  3788  3800
19          3788   3788  3788  3788  3800
20          3788   3788  3788  3788  3800

crass 在运行for循环之前

crass before running of for loop

# A tibble: 20 x 5
   WT_TRADE_PRICE   min   max   Bid   Ask
            <dbl> <dbl> <dbl> <dbl> <dbl>
 1          3801   3801  3801  3801  3802
 2          3801   3801  3801    NA    NA
 3          3801   3801  3801    NA    NA
 4          3797   3797  3797    NA    NA
 5          3797   3797  3797    NA    NA
 6          3796.  3795  3800    NA    NA
 7          3800   3800  3800    NA    NA
 8          3797   3797  3797    NA    NA
 9          3795.  3794  3797    NA    NA
10          3794   3794  3794    NA    NA
11          3793   3793  3793    NA    NA
12          3793   3793  3793    NA    NA
13          3794.  3793  3794    NA    NA
14          3795.  3794  3797    NA    NA
15          3793.  3790  3794    NA    NA
16          3789   3789  3789    NA    NA
17          3790   3790  3790    NA    NA
18          3788   3788  3788    NA    NA
19          3788   3788  3788    NA    NA
20          3788   3788  3788    NA    NA

这篇关于使用其他三个给定变量对两个同时变量进行迭代或逐行滚动计算的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

05-29 10:06