问题描述
我有两个熊猫DataFrame,如下所示:
I have two pandas DataFrames, as below:
df1 = pd.DataFrame({('Q1', 'SubQ1'):[1, 2, 3], ('Q1', 'SubQ2'):[1, 2, 3], ('Q2', 'SubQ1'):[1, 2, 3]})
df1['ID'] = ['a', 'b', 'c']
df2 = pd.DataFrame({'item_id': ['a', 'b', 'c'], 'url':['a.com', 'blah.com', 'company.com']})
df1
:
Q1 Q2 ID
SubQ1 SubQ2 SubQ1
0 1 1 1 a
1 2 2 2 b
2 3 3 3 c
df2
:
item_id url
0 a a.com
1 b blah.com
2 c company.com
请注意,df1
的某些列具有层次结构索引(例如('Q1', 'SubQ1')
),而有些列仅具有常规索引(例如ID
).
Note that df1
has some columns with hierarchical indexing (eg. ('Q1', 'SubQ1')
) and some with just normal indexing (eg. ID
).
我想在ID
和item_id
字段上合并这两个数据帧.使用:
I want to merge these two data frames on the ID
and item_id
fields. Using:
result = pd.merge(df1, df2, left_on='ID', right_on='item_id')
给予:
(Q1, SubQ1) (Q1, SubQ2) (Q2, SubQ1) (ID, ) item_id url
0 1 1 1 a a a.com
1 2 2 2 b b blah.com
2 3 3 3 c c company.com
如您所见,合并本身可以正常工作,但是MultiIndex已丢失,并已还原为元组.我尝试使用pd.MultiIndex.from_tuples
重新创建MultiIndex,如下所示:
As you can see, the merge itself works fine, but the MultiIndex has been lost and has reverted to tuples. I've tried to recreate the MultiIndex by using pd.MultiIndex.from_tuples
, as in:
result.columns = pd.MultiIndex.from_tuples(result)
但这会导致item_id
和url
列出现问题,仅使用其名称的前两个字符:
but this causes problems with the item_id
and url
columns, taking just the first two characters of their names:
Q1 Q2 ID i u
SubQ1 SubQ2 SubQ1 t r
0 1 1 1 a a a.com
1 2 2 2 b b blah.com
2 3 3 3 c c company.com
将df2
中的列转换为一个元素元组(即('item_id',)
而不只是'item_id'
)没有区别.
Converting the columns in df2
to be one-element tuples (ie. ('item_id',)
rather than just 'item_id'
) makes no difference.
如何合并这两个DataFrame并正确保留MultiIndex?或者,如何获取合并结果并返回具有适当MultiIndex的列,而又不弄乱item_id
和url
列的名称?
How can I merge these two DataFrames and keep the MultiIndex properly? Or alternatively, how can I take the result of the merge and get back to columns with a proper MultiIndex without mucking up the names of the item_id
and url
columns?
推荐答案
如果您无法击败'em,请加入'em. (在合并之前,使两个DataFrame具有相同数量的索引级别):
If you can't beat 'em, join 'em. (Make both DataFrames have the same number of index levels before merging):
import pandas as pd
df1 = pd.DataFrame({('Q1', 'SubQ1'):[1, 2, 3], ('Q1', 'SubQ2'):[1, 2, 3], ('Q2', 'SubQ1'):[1, 2, 3]})
df1['ID'] = ['a', 'b', 'c']
df2 = pd.DataFrame({'item_id': ['a', 'b', 'c'], 'url':['a.com', 'blah.com', 'company.com']})
df2.columns = pd.MultiIndex.from_product([df2.columns, ['']])
result = pd.merge(df1, df2, left_on='ID', right_on='item_id')
print(result)
收益
Q1 Q2 ID item_id url
SubQ1 SubQ2 SubQ1
0 1 1 1 a a a.com
1 2 2 2 b b blah.com
2 3 3 3 c c company.com
这也避免了UserWarning
:
这篇关于合并 pandas DataFrames时如何保持列MultiIndex值的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!