本文介绍了带有 MultiIndex 的 Pandas 数据框:检查字符串是否包含在索引级别的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

假设我有一个多索引的 Pandas 数据框,如下所示,取自 文档.

Let's say I have a multi-indexed pandas dataframe that looks like the following one, taken from the documentation.

import numpy as np
import pandas as pd

arrays = [np.array(['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux']),
          np.array(['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two'])]

df = pd.DataFrame(np.random.randn(8, 4), index=arrays)

看起来像这样:

                0         1         2         3
bar one -0.096648 -0.080298  0.859359 -0.030288
    two  0.043107 -0.431791  1.923893 -1.544845
baz one  0.639951 -0.008833 -0.227000  0.042315
    two  0.705281  0.446257 -1.108522  0.471676
foo one -0.579483 -2.261138 -0.826789  1.543524
    two -0.358526  1.416211  1.589617  0.284130
qux one  0.498149 -0.296404  0.127512 -0.224526
    two -0.286687 -0.040473  1.443701  1.025008

现在我只想要 MultiIndex 的第二级中包含ne"的行.

Now I only want the rows where "ne" is contained in second level of the MultiIndex.

有没有办法为(部分)包含的字符串切片 MultiIndex?

Is there any way to slice the MultiIndex for (partly) contained strings?

推荐答案

您可以应用以下蒙版:

df = df.iloc[df.index.get_level_values(1).str.contains('ne')]

返回:

bar one -0.143200  0.523617  0.376458 -2.091154
baz one -0.198220  1.234587 -0.232862 -0.510039
foo one -0.426127  0.594426  0.457331 -0.459682
qux one -0.875160 -0.157073 -0.540459 -1.792235

也可以在多个级别上应用逻辑掩码,例如:

It is possible also applying a logical mask on multiple levels, e.g.:

df = df.iloc[(df.index.get_level_values(0).str.contains('ba')) | (df.index.get_level_values(1).str.contains('ne'))]

返回:

bar one  0.620279  1.525277  0.379649 -0.032608
    two  0.465240 -0.190038  0.795730  1.720368
baz one  0.986828 -0.080394 -0.303319  0.747483
    two  0.487534  1.597006  0.114551  0.299502
foo one -0.085700  0.112433  0.704043  0.264280
qux one -0.291758 -1.071669  0.794354 -1.805530

这篇关于带有 MultiIndex 的 Pandas 数据框:检查字符串是否包含在索引级别的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-15 02:28