问题描述
我正在尝试运行 Mrjob示例从我的笔记本电脑上的Hadoop with Python本书中,以伪分布式模式获取.
I'm trying to run the Mrjob example from the book Hadoop with Python on my laptop, in pseudo distributed mode.
(可在此处)
所以我可以启动namenode和datanode:
So I can start the namenode and the datanode:
start-dfs.sh
返回:
Starting namenodes on [localhost]
localhost: starting namenode, logging to /home/me/hadoop-2.7.3/logs/hadoop-me-namenode-me-Notebook-PC.out
localhost: starting datanode, logging to /home/me/hadoop-2.7.3/logs/hadoop-me-datanode-me-Notebook-PC.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /home/me/hadoop-2.7.3/logs/hadoop-me-secondarynamenode-me-Notebook-PC.out
我也没有问题,可以创建输入文件结构并进行复制 salaries.csv
到hdfs:
I also have no problem creating the input file structure and copyingsalaries.csv
unto the hdfs:
hdfs dfs -mkdir /user/
hdfs dfs -mkdir /user/me/
hdfs dfs -mkdir /user/me/input/
hdfs dfs -put /home/me/Desktop/work/cv/hadoop/salaries.csv /user/me/input/
hdfs dfs -ls /user/me/input/
返回:
Found 1 items
-rw-r--r-- 3 me supergroup 1771685 2016-12-24 15:57 /user/me/input/salaries.csv
我还使 top_salaries.py
可执行文件:
sudo chmod a+x /home/me/Desktop/work/cv/hadoop/top_salaries.py
在本地模式下
启动 top_salaries.py
也可以:
python2 top_salaries.py -r local salaries.csv > answer.csv
返回:
No configs found; falling back on auto-configuration
Creating temp directory /tmp/top_salaries.me.20161224.195052.762894
Running step 1 of 1...
Counters: 1
warn
missing gross=3223
Counters: 1
warn
missing gross=3223
Streaming final output from /tmp/top_salaries.me.20161224.195052.762894/output...
Removing temp directory /tmp/top_salaries.me.20161224.195052.762894...
但是,在hadoop上运行此作业(将它们放在一起) python2 top_salaries.py -r hadoop hdfs:///user/me/input/salaries.csv
返回:
however, running this job on the hadoop (putting things together) python2 top_salaries.py -r hadoop hdfs:///user/me/input/salaries.csv
returns:
No configs found; falling back on auto-configuration
Looking for hadoop binary in $PATH...
Found hadoop binary: /home/me/hadoop-2.7.3/bin/hadoop
Using Hadoop version 2.7.3
Looking for Hadoop streaming jar in /home/me/hadoop-2.7.3...
Found Hadoop streaming jar: /home/me/hadoop-2.7.3/share/hadoop/tools/lib/hadoop-streaming-2.7.3.jar
Creating temp directory /tmp/top_salaries.me.20161224.195201.967990
Copying local files to hdfs:///user/me/tmp/mrjob/top_salaries.me.20161224.195201.967990/files/...
Running step 1 of 1...
session.id is deprecated. Instead, use dfs.metrics.session-id
Initializing JVM Metrics with processName=JobTracker, sessionId=
Cannot initialize JVM Metrics with processName=JobTracker, sessionId= - already initialized
Cleaning up the staging area file:/tmp/hadoop-me/mapred/staging/me553683497/.staging/job_local553683497_0001
Error launching job , bad input path : File does not exist: /tmp/hadoop-me/mapred/staging/me553683497/.staging/job_local553683497_0001/files/mrjob.zip#mrjob.zip
Streaming Command Failed!
Attempting to fetch counters from logs...
Can't fetch history log; missing job ID
No counters found
Scanning logs for probable cause of failure...
Can't fetch history log; missing job ID
Can't fetch task logs; missing application ID
Step 1 of 1 failed: Command '['/home/me/hadoop-2.7.3/bin/hadoop', 'jar', '/home/me/hadoop-2.7.3/share/hadoop/tools/lib/hadoop-streaming-2.7.3.jar', '-files', 'hdfs:///user/me/tmp/mrjob/top_salaries.me.20161224.195201.967990/files/mrjob.zip#mrjob.zip,hdfs:///user/me/tmp/mrjob/top_salaries.me.20161224.195201.967990/files/setup-wrapper.sh#setup-wrapper.sh,hdfs:///user/me/tmp/mrjob/top_salaries.me.20161224.195201.967990/files/top_salaries.py#top_salaries.py', '-input', 'hdfs:///user/me/input/salaries.csv', '-output', 'hdfs:///user/me/tmp/mrjob/top_salaries.me.20161224.195201.967990/output', '-mapper', 'sh -ex setup-wrapper.sh python top_salaries.py --step-num=0 --mapper', '-combiner', 'sh -ex setup-wrapper.sh python top_salaries.py --step-num=0 --combiner', '-reducer', 'sh -ex setup-wrapper.sh python top_salaries.py --step-num=0 --reducer']' returned non-zero exit status 512
这是我的core-site.xml:
this is my core-site.xml:
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://localhost:9000</value>
</property>
</configuration>
这是我的hdfs-site.xml:
and this is my hdfs-site.xml:
<configuration>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/me/Desktop/work/cv/hadoop/namenode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/me/Desktop/work/cv/hadoop/datanode</value>
</property>
</configuration>
(其他xml配置文件,我尚未编辑/更改)
(the other xml config files, I have not edited/changed)
这是python脚本(与上面的github链接相同)
here is the python script (same as on the github link above)
from mrjob.job import MRJob
from mrjob.step import MRStep
import csv
cols = 'Name,JobTitle,AgencyID,Agency,HireDate,AnnualSalary,GrossPay'.split(',')
class salarymax(MRJob):
def mapper(self, _, line):
# Convert each line into a dictionary
row = dict(zip(cols, [ a.strip() for a in csv.reader([line]).next()]))
# Yield the salary
yield 'salary', (float(row['AnnualSalary'][1:]), line)
# Yield the gross pay
try:
yield 'gross', (float(row['GrossPay'][1:]), line)
except ValueError:
self.increment_counter('warn', 'missing gross', 1)
def reducer(self, key, values):
topten = []
# For 'salary' and 'gross' compute the top 10
for p in values:
topten.append(p)
topten.sort()
topten = topten[-10:]
for p in topten:
yield key, p
combiner = reducer
if __name__ == '__main__':
salarymax.run()
推荐答案
确定.您需要编辑文件 core-site.xml
:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
</configuration>
和文件 hdfs-site.xml
为:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<value>/home/edureka/hadoop-2.7.3/namenode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/edureka/hadoop-2.7.3/datanode</value>
</property>
</configuration>
,您需要将 hdfs-site.xml
编辑为:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>dfs.replication</name>
<value>2</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>/home/edureka/hadoop-2.7.3/datanode</value>
</property>
</configuration>
,您需要创建一个包含内容的 mapred-site.xml
文件:
and you need to create a mapred-site.xml
file with content:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
,您需要编辑 yarn-site.xml
以包含:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
</configuration>
然后做:
start-dfs.sh
start-yarn.sh
然后做:
hdfs dfs -mkdir /user/
hdfs dfs -mkdir /user/me/
hdfs dfs -mkdir /user/me/input/
hdfs dfs -put /home/me/Desktop/work/cv/hadoop/salaries.csv /user/me/input/
现在正在做
sudo chmod a+x /home/me/Desktop/work/cv/hadoop/top_salaries.py
python2 top_salaries.py -r hadoop hdfs:///user/me/input/salaries.csv > answer.csv
有效.
这篇关于hadoop模式下的Mrjob:启动作业时出错,错误的输入路径:文件不存在的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!