本文介绍了Python3 vs Python2列表/生成器范围性能的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时删除!!

我有一个简单的函数,可以对列表进行分区并返回列表中的索引i,这样索引i小于i的元素要比list [i]小,索引大于i的元素要大.

I have this simple function that partitions a list and returns an index i in the list such that elements at indices less that i are smaller than list[i] and elements at indices greater than i are bigger.

def partition(arr):
    first_high = 0
    pivot = len(arr) - 1
    for i in range(len(arr)):
        if arr[i] < arr[pivot]:
            arr[first_high], arr[i] = arr[i], arr[first_high]
            first_high = first_high + 1

    arr[first_high], arr[pivot] = arr[pivot], arr[first_high]
    return first_high


if __name__ == "__main__":
    arr = [1, 5, 4, 6, 0, 3]
    pivot = partition(arr)
    print(pivot)

使用python 3.4的运行时要比python 2.7.6的运行时大得多在OS X上:

The runtime is substantially bigger with python 3.4 that python 2.7.6on OS X:

time python3 partition.py
real 0m0.040s
user 0m0.027s
sys  0m0.010s

time python partition.py
real 0m0.031s
user 0m0.018s
sys  0m0.011s

Ubuntu 14.04/虚拟盒上的内容相同

Same thing on ubuntu 14.04 / virtual box

python3:

real 0m0.049s
user 0m0.034s
sys  0m0.015s

python:

real 0m0.044s
user 0m0.022s
sys  0m0.018s

python3本质上比python2.7慢吗?还是对代码进行了任何特定的优化,使其运行速度与在python2.7上一样快

Is python3 inherently slower that python2.7 or is there any specific optimizations to the code do make run as fast as on python2.7

推荐答案

如注释中所述,您应该使用timeit进行基准测试,而不是使用OS工具.

As mentioned in the comments, you should be benchmarking with timeit rather than with OS tools.

我的猜测是range函数在Python 3中的执行速度可能会慢一些.在Python 2中,它只是返回,在Python 3中返回 range

My guess is the range function is probably performing a little slower in Python 3. In Python 2 it simply returns a list, in Python 3 it returns a range which behave more or less like a generator. I did some benchmarking and this was the result, which may be a hint on what you're experiencing:

python -mtimeit "range(10)"
1000000 loops, best of 3: 0.474 usec per loop

python3 -mtimeit "range(10)"
1000000 loops, best of 3: 0.59 usec per loop

python -mtimeit "range(100)"
1000000 loops, best of 3: 1.1 usec per loop

python3 -mtimeit "range(100)"
1000000 loops, best of 3: 0.578 usec per loop

python -mtimeit "range(1000)"
100000 loops, best of 3: 11.6 usec per loop

python3 -mtimeit "range(1000)"
1000000 loops, best of 3: 0.66 usec per loop

如您所见,当提供给range的输入为 small 时,在Python 2中它往往很快.如果输入增加,则Python 3的range表现会更好.

As you can see, when input provided to range is small, it tends to be fast in Python 2. If the input grows, then Python 3's range behave better.

我的建议:测试包含一百或一千个元素的较大数组的代码.

My suggestion: test the code for larger arrays, with a hundred or a thousand elements.

实际上,我走得更远,并测试了元素的完整迭代.结果完全支持Python 2:

Actually, I went further and test a complete iteration through the elements. The results were totally in favor of Python 2:

python -mtimeit "for i in range(1000):pass"
10000 loops, best of 3: 31 usec per loop

python3 -mtimeit "for i in range(1000):pass"
10000 loops, best of 3: 45.3 usec per loop

python -mtimeit "for i in range(10000):pass"
1000 loops, best of 3: 330 usec per loop

python3 -mtimeit "for i in range(10000):pass"
1000 loops, best of 3: 480 usec per loop

我的结论是,迭代列表可能比通过生成器迭代更快.尽管后者绝对在内存消耗方面更为有效.这是在速度和内存之间进行权衡的经典示例.尽管速度差异本身并没有那么大(小于毫秒).因此,您应该重视这一点,并且对您的程序更有利.

My conclusion is that, is probably faster to iterate through a list than through a generator. Although the latter is definitely more efficient regarding memory consumption. This is a classic example of the trade off between speed and memory. Although the speed difference is not that big per se (less than miliseconds). So you should value this and what's better for your program.

这篇关于Python3 vs Python2列表/生成器范围性能的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

1403页,肝出来的..

09-08 16:57