本文介绍了插槽类型对插槽AWS LEX的作用不同的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时删除!!

我有两个插槽类型相同的插槽,但是它们的工作方式不同.

    具有自由文本插槽类型的
  1. 插槽名称 slotOneBOne 不接受确定,但是具有相同自由文本广告位类型接受确定
    带有自由文本插槽类型的
  1. 插槽名称 startMessage 可以接受,但是具有相同的插槽名称 slotOneDOne >自由文本广告位类型不接受允许
  1. 某些插槽仅接受用于训练的确切插槽类型值.

插槽类型具有1000个值的自由文本,我在本文中使用了我们的代码,该代码可从Python获取自由文本

我正在使用向客户端返回参数.

需要帮助:(

解决方案

如果不真正了解自定义插槽类型的配置方式以及哪种类型的Lambda支持该机器人,就很难说.关于问题3;我可能会猜测您正在使用该插槽的枚举,这就是为什么只能正确检测到确切值的原因.

I have two slots with the same slot type but they work differently.

  1. Slot name slotOneBOne with free text slot type does not accept ok but Slot name slotOneBTwo with same free text slot type accept ok
  1. Slot name startMessage with free text slot type accept let's do but Slot name slotOneDOne with same free text slot type does not accept let's do
  1. Some slots only accept the exact slot type value that is used to train.

Slot Type free text having 1000 values, I used this article where we have a code that gets freetext from Python https://aws.amazon.com/blogs/machine-learning/create-a-translator-chatbot-using-amazon-translate-and-amazon-lex/

I am using Return parameters to client.

Need help :(

解决方案

It's tough to say without really knowing how your custom slot types are configured and what sort of Lambda's are supporting the bot.With regards to question 3; I would hazard a guess that you're using an enumeration for the slot which is why only the exact values are detected correctly.

这篇关于插槽类型对插槽AWS LEX的作用不同的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

1403页,肝出来的..

09-08 06:39