本文介绍了计算不同奇数的列表(如果存在),使得它们的和等于给定数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

:- use_module(library(clpfd)). % load constraint library

% [constraint] Compute a list of distinct odd numbers (if one exists), such that their sum is equal to a given number.

odd(Num) :- Num mod 2 #= 1.

sumOfList([],N,N) :- !.
sumOfList([H|T],Counter,N) :-
  NewN #= H + Counter,
  sumOfList(T,NewN,N).

buildOddList(N,InputList,L) :-
  %return list when sum of list is N
  V in 1..N,
  odd(V),
  append(InputList,[V],TempL),
  sumOfList(TempL,0,N)->
    L = TempL;
    buildOddList(N,TempL,L).

computeOddList(N) :-
  buildOddList(N,[],L),
  label(L).

这是我的代码,我似乎没有得到正确的输出,任何代码批评? :)

This is my code, I can't seem to get the right output, any code critics? :)

推荐答案

可以建议你这个解决方案:

Can suggest you this solution:

:- use_module(library(clpfd)).

all_odd([]) :-!.
all_odd([H | T]) :-
 H mod 2 #= 1,
 all_odd(T).

solve(N,L) :-
 N2 is floor(sqrt(N)),
 Len in 1..N2,
 label([Len]),

 length(L, Len),

 L ins 1..N,

 all_different(L),
 all_odd(L),

 sum(L,#=,N),

 label(L),

 % only show sorted sets
 sort(L,L).

示例:

?- solve(17,L).
L = [17] ;
L = [1, 3, 13] ;
L = [1, 5, 11] ;
L = [1, 7, 9] ;
L = [3, 5, 9] ;
false.

这篇关于计算不同奇数的列表(如果存在),使得它们的和等于给定数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

10-28 21:35