本文介绍了计算表达式中的递归函数的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

限时删除!!

首先是一些背景.我目前正在学习有关Monadic解析器组合器的一些知识.当我尝试从本文(第16-17页),我想出了以下解决方案:

Some background first. I am currently learning some stuff about monadic parser combinators. While I tried to transfer the 'chainl1' function from this paper (p. 16-17), I came up with this solution:

let chainl1 p op = parser {
  let! x = p
  let rec chainl1' (acc : 'a) : Parser<'a> =
      let p' = parser {
          let! f = op
          let! y = p
          return! chainl1' (f acc y)
          }
      p' <|> succeed acc
  return! chainl1' x
}

我用一些大的输入测试了该函数,并得到了StackOverflowException.现在我想知道,是否可以重写使用某些计算表达式的递归函数,使其使用尾递归?

I tested the function with some large input and got a StackOverflowException. Now I am wondering, is it posible to rewrite a recursive function, that uses some computation expression, in a way so it is using tail recursion?

当我展开计算表达式时,我看不到通常如何实现.

When I expand the computation expression, I can not see how it would be generally possible.

let chainl1 p op =
    let b = parser
    b.Bind(p, (fun x ->
    let rec chainl1' (acc : 'a) : Parser<'a> =
        let p' =
            let b = parser
            b.Bind(op, (fun f ->
            b.Bind(p, (fun y ->
            b.ReturnFrom(chainl1' (f acc y))))))
        p' <|> succeed acc
    b.ReturnFrom(chainl1' x)))

推荐答案

在您的代码中,以下函数不是尾部递归的,因为-在每次迭代中-它都会在p'succeed之间进行选择:

In your code, the following function isn't tail-recursive, because - in every iteration - it makes a choice between either p' or succeed:

// Renamed a few symbols to avoid breaking SO code formatter
let rec chainl1Util (acc : 'a) : Parser<'a> =
  let pOp = parser {
    let! f = op
    let! y = p
    return! chainl1Util (f acc y) }
  // This is done 'after' the call using 'return!', which means
  // that the 'cahinl1Util' function isn't really tail-recursive!
  pOp <|> succeed acc

根据解析器组合器的实现,以下重写可能有效(我不是专家,但值得尝试):

Depending on your implementation of parser combinators, the following rewrite could work (I'm not an expert here, but it may be worth trying this):

let rec chainl1Util (acc : 'a) : Parser<'a> =
  // Succeeds always returning the accumulated value (?)
  let pSuc = parser {
    let! r = succeed acc
    return Choice1Of2(r) }
  // Parses the next operator (if it is available)
  let pOp = parser {
    let! f = op
    return Choice2Of2(f) }

  // The main parsing code is tail-recursive now...
  parser {
    // We can continue using one of the previous two options
    let! cont = pOp <|> pSuc
    match cont with
    // In case of 'succeed acc', we call this branch and finish...
    | Choice1Of2(r) -> return r
    // In case of 'op', we need to read the next sub-expression..
    | Choice2Of2(f) ->
        let! y = p
        // ..and then continue (this is tail-call now, because there are
        // no operations left - e.g. this isn't used as a parameter to <|>)
        return! chainl1Util (f acc y) }

通常,用于在计算表达式内编写尾递归函数的模式有效.这样的事情会起作用(对于以允许尾递归的方式实现的计算表达式):

In general, the pattern for writing tail-recursive functions inside computation expressions works. Something like this will work (for computation expressions that are implemented in a way that allows tail-recursion):

let rec foo(arg) = id {
  // some computation here
  return! foo(expr) }

您可以检查到,新版本与此模式匹配,但原始版本则不匹配.

As you can check, the new version matches this pattern, but the original one did not.

这篇关于计算表达式中的递归函数的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

1403页,肝出来的..

09-07 01:37