本文介绍了如何在python中从声音转换为频谱然后回到声音?的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
如何获取一个wav文件,每隔几毫秒将其转换为一个频率强度数组,对该数组进行操作,然后将该新数组转换回一个wav文件.
How do I take a wav file, transform it into an array of frequency intensities every couple ms, do something with that array then transform that new array back into a wav file.
有没有一个看起来像这样的库
Is there a library that looks something like this
wav_data = library.read_wav('aoeu.wav') # [0, 3, 201, ... etc]
spectrum = library.get_spectrum(wav_data)
# [[0, 0, 0, .2, 0, .7, ... etc],
# [0, 0, 0, .3, 0, .8, ... etc],
# ... etc]
spectrum[:, 0] = 0 # kill the lowest frequency (assuming spectrum is a numpy array)
library.spectrum_to_wav(spectrum) # [0, 3, 201, ... etc]
推荐答案
使用 librosa.stft
和 librosa.istft
并使用 librosa.load
import librosa
audio, sample_rate = librosa.load('song.wav')
spectrum = librosa.stft(audio)
reconstructed_audio = librosa.istft(spectrum)
sum(audio[:len(reconstructed_audio)] - reconstructed_audio) # very close to 0
我正在使用 audio [:len(reconstructed_audio)]
,因为信息会在转换中丢失. istft(stft(foo))
可以返回比 foo
短一点且值略有不同的数组.
I'm using audio[:len(reconstructed_audio)]
because information is lost in the transform. istft(stft(foo))
can return an array slightly shorter than foo
and with slightly different values.
这篇关于如何在python中从声音转换为频谱然后回到声音?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!