问题描述
clang和GCC具有int __builtin_ctz(unsigned)
函数.这将以整数形式计算尾随零. 有关此功能族的Wikipedia文章提到可以使用以下命令加速二进制GCD算法__builtin_ctz
,但我不知道如何.
clang and GCC have a int __builtin_ctz(unsigned)
function. This counts the trailing zeros in an integer. The Wikipedia article on this family of functions mentions that the binary GCD algorithm can be sped up using __builtin_ctz
, but I don't understand how.
二进制GCD的示例实现如下:
unsigned int gcd(unsigned int u, unsigned int v)
{
// simple cases (termination)
if (u == v)
return u;
if (u == 0)
return v;
if (v == 0)
return u;
// look for factors of 2
if (~u & 1) // u is even
if (v & 1) // v is odd
return gcd(u >> 1, v);
else // both u and v are even
return gcd(u >> 1, v >> 1) << 1;
if (~v & 1) // u is odd, v is even
return gcd(u, v >> 1);
// reduce larger argument
if (u > v)
return gcd(u - v, v);
return gcd(v - u, u);
}
我怀疑我可以按如下方式使用__builtin_ctz
:
My suspicion is that I could use __builtin_ctz
as follows:
constexpr unsigned int gcd(unsigned int u, unsigned int v)
{
// simplified first three ifs
if (u == v || u == 0 || v == 0)
return u | v;
unsigned ushift = __builtin_ctz(u);
u >>= ushift;
unsigned vshift = __builtin_ctz(v);
v >>= vshift;
// Note sure if max is the right approach here.
// In the if-else block you can see both arguments being rshifted
// and the result being leftshifted only once.
// I expected to recreate this behavior using max.
unsigned maxshift = std::max(ushift, vshift);
// The only case which was not handled in the if-else block before was
// the odd/odd case.
// We can detect this case using the maximum shift.
if (maxshift != 0) {
return gcd(u, v) << maxshift;
}
return (u > v) ? gcd(u - v, v) : gcd(v - u, u);
}
int main() {
constexpr unsigned result = gcd(5, 3);
return result;
}
不幸的是,这还行不通.该程序的结果为4,应为1.那么,我在做什么错呢?如何在这里正确使用__builtin_ctz
? 在GodBolt上查看到目前为止的代码.
Unfortunately this does not work yet. The program results in 4, when it should be 1. So what am I doing wrong? How can I use __builtin_ctz
correctly here? See my code so far on GodBolt.
推荐答案
这是来自注释:
尽管尾部递归算法通常很优雅,但是迭代实现在实践中几乎总是更快. (现代编译器实际上可以在非常简单的情况下执行此转换.)
While tail-recursive algorithms are often elegant, iterative implementations are almost always faster in practice. (Modern compilers can actually perform this transform in very simple cases.)
unsigned ugcd (unsigned u, unsigned v)
{
unsigned t = u | v;
if (u == 0 || v == 0)
return t; /* return (v) or (u), resp. */
int g = __builtin_ctz(t);
while (u != 0)
{
u >>= __builtin_ctz(u);
v >>= __builtin_ctz(v);
if (u >= v)
u = (u - v) / 2;
else
v = (v - u) / 2;
}
return (v << g); /* scale by common factor. */
}
如前所述,|u - v| / 2
步骤通常实现为非常有效的无条件右移,例如 shr r32
,以除以(2)
-同时为(u)
,(v)
是奇数,因此|u - v|
必须是偶数.
As mentioned, the |u - v| / 2
step is typically implemented as a very efficient, unconditional right shift, e.g., shr r32
, to divide by (2)
- as both (u)
, (v)
are odd, and therefore |u - v|
must be even.
这不是严格的必要,因为整理"步骤:u >>= __builtin_clz(u);
将在下一次迭代中有效地执行此操作.
It's not strictly necessary, as the 'oddifying' step: u >>= __builtin_clz(u);
will effectively perform this operation in the next iteration.
假设(u)
或(v)
具有随机"位分布,则(n)
通过 tzcnt
尾随零的概率为〜(1/(2^n))
.该说明是对 bsf
(IIRC的Haswell之前的__builtin_clz
的实现)的改进.
Supposing that (u)
or (v)
have a 'random' bit distribution, the probability of (n)
trailing zeroes, via tzcnt
, is ~ (1/(2^n))
. This instruction is an improvement over bsf
, the implementation for __builtin_clz
prior to Haswell, IIRC.
这篇关于如何使用__builtin_ctz加速二进制GCD算法?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!