问题描述
slim.learning.train(...)接受两个与保存模型( save_interval_secs )或保存摘要( save_summaries_secs )有关的参数.该API的问题在于,它仅允许基于某个时间间隔"保存模型/摘要,但我需要根据训练的每一步"进行操作.
slim.learning.train(...) accepts two arguments pertaining to saving the model(save_interval_secs) or saving the summaries(save_summaries_secs). The problem with this API is, it only allows to save the model/summary based on some "time interval" but I need to do this based on "each step" of the training.
如何使用TF-slim api实现此目标?
how to achieve this using TF-slim api.?
这是slim.learning火车api-
Here is the slim.learning train api -
def train(train_op,
logdir,
train_step_fn=train_step,
train_step_kwargs=_USE_DEFAULT,
log_every_n_steps=1,
graph=None,
master='',
is_chief=True,
global_step=None,
number_of_steps=None,
init_op=_USE_DEFAULT,
init_feed_dict=None,
local_init_op=_USE_DEFAULT,
init_fn=None,
ready_op=_USE_DEFAULT,
summary_op=_USE_DEFAULT,
**save_summaries_secs=600,**
summary_writer=_USE_DEFAULT,
startup_delay_steps=0,
saver=None,
**save_interval_secs=600,**
sync_optimizer=None,
session_config=None,
session_wrapper=None,
trace_every_n_steps=None,
ignore_live_threads=False):
推荐答案
不建议使用Slim,使用Estimator可以完全控制保存/汇总频率.
Slim is deprecated, and using Estimator you get full control over saving / summary frequency.
您还可以将秒数设置为非常小的数字,以便始终保存.
You can also set the seconds to a very small number so it always saves.
这篇关于如何在每个训练步骤中保存训练模型,而不是根据时间间隔定期保存? -在TensorFlow-Slim中的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!