本文介绍了将具有重叠索引但不重叠值的Pandas DataFrame连接起来的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!
问题描述
我有两个任意形状的DataFrame:
I have two DataFrames of arbitrary shape of the type:
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 NaN
3 A3 NaN NaN
4 A4 NaN NaN
和
A B C
2 NaN NaN C2
3 NaN B3 C3
4 NaN B4 C4
5 A5 B5 C5
6 A6 B6 C6
两个DataFrame具有重叠的索引。在有重叠的地方,对于给定的列,在一个DataFrame中有一个非 NaN
和一个 NaN
在另一个。如何将它们连接起来,以便可以实现具有所有值且没有<$ c $ NaN s的DataFrame:
The two DataFrames have overlapping indexes. Where there is an overlap, for a given column, there is a non-NaN
in one DataFrame, and a NaN
in the other. How can I concatenate these such that I can achieve a DataFrame with all values and no NaN
s:
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 C2
3 A3 B3 C3
4 A4 B4 C4
5 A5 B5 C5
6 A6 B6 C6
我建议的解决方案是:
df3 = pd.concat([pd.concat([df1[col].dropna(), df2[col].dropna()]) for col in df1.columns], axis=1)
但是,理想情况下,我不会
However, ideally I would not work column-by-column.
推荐答案
使用:
df = df1.combine_first(df2)
print(df)
A B C
0 A0 B0 C0
1 A1 B1 C1
2 A2 B2 C2
3 A3 B3 C3
4 A4 B4 C4
5 A5 B5 C5
6 A6 B6 C6
这篇关于将具有重叠索引但不重叠值的Pandas DataFrame连接起来的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!