问题描述
我只有一列,但我不了解如何操作,但是同一列中有两种不同的格式.
I have one column in I don't understand how but there is two different format in a single column.
df['Date'] = [6/24/2019,6/14/2019,2019-09-06 00:00:00,6/14/2019,6/14/2019]
我想要对其进行进一步处理,所以我希望将其制成单一格式.
I want process it further so I want make it in a single format.
df['Date'] = [6/24/2019,6/14/2019,9/06/2019,6/14/2019,6/14/2019]
我已经尝试过类似的事情
I have tried something like this
data['New_date'] = pd.to_datetime(df['Date'], format = '%m/%d/%Y')
但这给了我这个错误
ValueError:时间数据6/24/2019与指定的格式不匹配
ValueError: time data 6/24/2019 doesn't match format specified
推荐答案
使用 to_datetime
和NaT
的errors='coerce'
(如果不匹配),并用Series. org/pandas-docs/stable/reference/api/pandas.Series.combine_first.html"rel =" nofollow noreferrer> Series.combine_first
或 Series.fillna
,最后由 Series.dt.strftime
:
Use to_datetime
with both formats and errors='coerce'
for NaT
if not match and replace missing values by another Series
by Series.combine_first
or Series.fillna
them, last convert to strings by Series.dt.strftime
:
s1 = pd.to_datetime(data['Date'], format='%Y-%d-%m %H:%M:%S', errors='coerce')
s2 = pd.to_datetime(data['Date'], format = '%m/%d/%Y', errors='coerce')
#2 possible solutions
data['new'] = s1.fillna(s2).dt.strftime('%m/%d/%Y')
data['new'] = s1.combine_first(s2).dt.strftime('%m/%d/%Y')
print (data)
Date new
0 6/24/2019 06/24/2019
1 6/14/2019 06/14/2019
2 2019-09-06 00:00:00 06/09/2019
3 6/14/2019 06/14/2019
4 6/14/2019 06/14/2019
这篇关于如何使两个不同的日期格式在单列中唯一?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!