问题描述
我最近做附上Dijkstra算法的单源最短路径第3版到我的项目。
I did recently attach the 3rd version of Dijkstra algorithm for shortest path of single source into my project.
我认识到,有许多不同的实现而变化强烈的表现,也做不同的结果在很大程度上图的质量。随着我的数据集(> 100.000顶点)运行时从20分钟到几秒钟变化。钍最短路径也由1-2%之间。
I realize that there are many different implementations which vary strongly in performance and also do vary in the quality of result in large graphs. With my data set (> 100.000 vertices) the runtime varies from 20 minutes to a few seconds. Th shortest paths also vary by 1-2%.
这是你知道的最好的实现?
Which is the best implementation you know?
编辑:我的数据是液压网络,每个节点1至5个顶点。它相当于一个街道地图。我提出了一些修改一个已经加速算法(使用的排序列表的所有剩余节点),现在找到在时间的一小部分相同的结果。我已经寻找这样的事情很长一段时间。我不知道这样的实现已经存在。
My Data is a hydraulic network, with 1 to 5 vertices per node. Its comparable to a street map. I made some modifications to a already accelerated algorithm (using a sorted list for all remaining nodes) and now find to the same results in a fraction of time. I have searched for such a thing quite a while. I wonder if such a implementation already exists.
我无法解释的结果略有不同。我知道迪杰斯特拉不是启发式,但所有的实施方式似乎是正确的。更快的解决方案有结果更短的路径。我使用双precision数学专。
I can not explain the slight differences in results. I know that Dijkstra is not heuristic, but all the implementations seem to be correct. The faster solutions have the results with shorter paths. I use double precision math exclusively.
编辑2:我发现,在被发现路径的差异确实是我的错。我已经插入特殊处理一些顶点(仅在一个方向有效),并忘了,在其他实施。
EDIT 2:I found out that the differences in the found path are indeed my fault. I had inserted special handling for some vertices (only valid in one direction) and forgot about that in the other implementation.
但 IM仍然比吓一跳更多的Dijkstra算法可以通过下列变化显着加速:一般而言,Dijkstra算法包含了一个循环,如:
BUT im still more than surprised that Dijkstra can be accelerated dramatically by the following change:In general a Dijkstra algorithm contains a loop like:
MyListType toDoList; // List sorted by smallest distance
InsertAllNodes(toDoList);
while(! toDoList.empty())
{
MyNodeType *node = *toDoList.first();
toDoList.erase(toDoList.first());
...
}
如果你改变了这点,它的工作原理相同,但性能更好:
If you change this a little bit, it works the same, but performs better:
MyListType toDoList; // List sorted by smallest distance
toDoList.insert(startNode);
while(! toDoList.empty())
{
MyNodeType *node = *toDoList.first();
toDoList.erase(toDoList.first());
for(MyNeigborType *x = node.Neigbors; x != NULL; x++)
{
...
toDoList.insert(x->Node);
}
}
看来,这种修改降低了运行时通过不大小的顺序,但指数的顺序。它减少了我运行的形式在30秒至小于2.我无法找到此修改在任何文献中。它也非常明显,原因在于排序列表。插入/擦除执行100.000元更糟糕的是一个完整的。
It seems, that this modification reduces the runtime by a order not of magnitude, but a order of exponent. It reduced my runtime form 30 Seconds to less than 2. I can not find this modification in any literature. It's also very clear that the reason lies in the sorted list. insert/erase performs much worse with 100.000 elements that with a hand full of.
答:
在很多谷歌上搜索我发现它自己。答案显然是: boost图LIB 。惊人的 - 我还没有发现这个相当长一段时间。如果你想,有Dijkstra算法实现之间没有性能差异,请参见维基。
After a lot of googling i found it myself. The answer is clearly:boost graph lib. Amazing - i had not found this for quite a while. If you think, that there is no performance variation between Dijkstra implementations, see wikipedia.
推荐答案
著名的道路网络的最佳实现(> 1万个节点)具有查询时间EX pressed在微秒。详情请参见第9 DIMACS执行方面的挑战(2006年)。注意,这些是不单纯的Dijkstra,当然,作为整点是为了更快获得结果
The best implementations known for road networks (>1 million nodes) have query times expressed in microseconds. See for more details the 9th DIMACS Implementation Challenge(2006). Note that these are not simply Dijkstra, of course, as the whole point was to get results faster.
这篇关于什么是最快的Dijkstra算法实现你知道(在C ++中)?的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!