问题描述
是否有类似 ndimage
的过滤器?我没有设法使 scipy.ndimage.filters.generic_filter
返回超过标量。取消注释下面代码中的行以获取错误: TypeError:只有length-1数组可以转换为Python标量
。
Is there a filter similar to ndimage
's generic_filter that supports vector output? I did not manage to make scipy.ndimage.filters.generic_filter
return more than a scalar. Uncomment the line in the code below to get the error: TypeError: only length-1 arrays can be converted to Python scalars
.
我正在寻找一个处理2D或3D数组的通用过滤器,并在每个点返回一个向量。因此,输出将具有一个附加维度。对于下面的示例,我希望这样的事情:
I'm looking for a generic filter that process 2D or 3D arrays and returns a vector at each point. Thus the output would have one added dimension. For the example below I'd expect something like this:
m.shape # (10,10)
res.shape # (10,10,2)
示例代码
import numpy as np
from scipy import ndimage
a = np.ones((10, 10)) * np.arange(10)
footprint = np.array([[1,1,1],
[1,0,1],
[1,1,1]])
def myfunc(x):
r = sum(x)
#r = np.array([1,1]) # uncomment this
return r
res = ndimage.generic_filter(a, myfunc, footprint=footprint)
推荐答案
generic_filter
期望 myfunc
返回标量,而不是向量。
但是,没有什么可以阻止来自的 myfunc
将信息
添加到比如传递给的列表中 myfunc
作为额外参数。
The generic_filter
expects myfunc
to return a scalar, never a vector.However, there is nothing that precludes myfunc
from also adding informationto, say, a list which is passed to myfunc
as an extra argument.
而不是使用 generic_filter返回的数组
,我们可以通过重新整理这个列表来生成矢量值数组。
Instead of using the array returned by generic_filter
, we can generate our vector-valued array by reshaping this list.
例如,
import numpy as np
from scipy import ndimage
a = np.ones((10, 10)) * np.arange(10)
footprint = np.array([[1,1,1],
[1,0,1],
[1,1,1]])
ndim = 2
def myfunc(x, out):
r = np.arange(ndim, dtype='float64')
out.extend(r)
return 0
result = []
ndimage.generic_filter(
a, myfunc, footprint=footprint, extra_arguments=(result,))
result = np.array(result).reshape(a.shape+(ndim,))
这篇关于具有多维(或非标量)输出的Scipy滤波器的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!