问题描述
IEEE 754浮点除法的可逆性是什么?我的意思是,该标准是否保证如果double y = 1.0 / x
然后x == 1.0 / y
,即x
可以精确地一点一点恢复?
What is the invertability of the IEEE 754 floating-point division? I mean is it guaranteed by the standard that if double y = 1.0 / x
then x == 1.0 / y
, i.e. x
can be restored precisely bit by bit?
y
是infinity
或NaN
的情况是明显的例外.
The cases when y
is infinity
or NaN
are obvious exceptions.
推荐答案
是的,IEEE 754双精度(*)值x
就是x != 1.0 / (1.0 / x)
.
Yes, there are IEEE 754 double-precision(*) values x
that are such x != 1.0 / (1.0 / x)
.
使用此属性可以轻松构建一个正常值的示例:在0x1.fffffffffffffp0编写的示例/> C99的浮点值十六进制表示法就是1.0 / (1.0 / 0x1.fffffffffffffp0) == 0x1.ffffffffffffep0
.很自然地期望0x1.fffffffffffffp0
是一个反例,因为1.0 / 0x1.fffffffffffffp0
落在binade的开头,在那里浮点数的密度较小,因此最里面的除法必须发生较大的相对误差.更准确地说,1.0 / 0x1.fffffffffffffp0
恰好位于0.5
及其双精度后继字符之间的中点上方,因此1.0 / 0x1.fffffffffffffp0
舍入为0.5的后继字符,具有较大的相对误差.
It is easy to build an example of a normal value with this property by hand: the one that's written 0x1.fffffffffffffp0
in C99's hexadecimal notation for floating-point values is such that 1.0 / (1.0 / 0x1.fffffffffffffp0) == 0x1.ffffffffffffep0
. It was natural to expect 0x1.fffffffffffffp0
to be a counter-example because 1.0 / 0x1.fffffffffffffp0
falls at the beginning of a binade, where floating-point numbers are less dense, so a larger relative error had to happen on the innermost division. More precisely, 1.0 / 0x1.fffffffffffffp0
falls just above the midpoint between 0.5
and its double-precision successor, so that 1.0 / 0x1.fffffffffffffp0
is rounded up to the successor of 0.5, with a large relative error.
以十进制%.16e
格式,0x1.fffffffffffffp0
是1.9999999999999998e+00
,而0x1.ffffffffffffep0
是1.9999999999999996e+00
.
In decimal %.16e
format, 0x1.fffffffffffffp0
is 1.9999999999999998e+00
and 0x1.ffffffffffffep0
is 1.9999999999999996e+00
.
(*)对于任何IEEE 754格式,没有理由使反函数具有该属性.
(*) there is no reason for the inverse function to have the property in the question for any of the IEEE 754 format
这篇关于IEEE 754浮点除法的可逆性的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!