本文介绍了函数的渐近比较的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

我想渐近地比较以下函数,然后将它们按升序排列。还要求提供适当的解释
lg((√n)!),lg(SquareRoot(n!)),SquareRootlg(n!),(lg(√n))!,(SquareRoot(lg n)) !,SquareRoot(lg n)!

I want to compare following functions asymptotically and then arrange them in the ascending order. Also requested is a proper explanation lg((√n)!), lg(SquareRoot(n!)), SquareRootlg(n!), (lg(√n))!, (SquareRoot(lg n))!, SquareRoot(lg n)!

推荐答案

如果您对一般解决方案 感到疑惑,并且按照渐进函数进行比较。这是我的建议:

If you wonder about "general solution" and you follow a lot into asymptotic functions comparisons. Here is what I recommend :

使用,一旦您知道:

f(n) = O(g(n)) iff limit (n approaches +inf) f(n)/g(n) exists and is not +inf

您可以将用于示例开源,此处位于。

You can use Computer Algebra System, for example opensource Maxima, here is in Maxima documentation about limits .

因此,请检查 lg (n)* lg(n)= O(sqrt(n))可以是dane正在检查(lg(n)lg(n))/ sqrt(n )

So, checking lg(n)*lg(n) = O(sqrt(n)) can be dane is checking limit of (lg(n)lg(n))/sqrt(n) :

(%i1) limit( (log(n)^2) / (sqrt(n)), n, inf);
(%o1)                                  0

如果愿意,可以使用更长,更描述性的符号:

If you like, longer, more descriptive notation :

(%i1) f(n) := log(n)^2 ;
                                           2
(%o1)                           f(n) := log (n)
(%i2) g(n) := sqrt(n) ;
(%o2)                           g(n) := sqrt(n)
(%i3) limit(f(n)/g(n), n, inf);
(%o3)                                  0

这篇关于函数的渐近比较的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-18 06:36