本文介绍了Python scikit学习pca.explained_variance_ratio_截止的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着小编来一起学习吧!

问题描述

当选择主成分(k)的数目,我们选择k以可使得例如,方差为99%,被保持在最小值.

When choosing the number of principal components (k), we choose k to be the smallest value so that for example, 99% of variance, is retained.

但是,在Python Scikit学习中,我不是100%确定pca.explained_variance_ratio_ = 0.99等于保留了99%的方差"吗?有人可以开导吗?谢谢.

However, in the Python Scikit learn, I am not 100% sure pca.explained_variance_ratio_ = 0.99 is equal to "99% of variance is retained"? Could anyone enlighten? Thanks.

  • Python Scikit学习PCA手册在这里

http://scikit -learn.org/stable/modules/generation/sklearn.decomposition.PCA.html#sklearn.decomposition.PCA

推荐答案

是的,您几乎是正确的. pca.explained_variance_ratio_参数返回每个维度说明的方差矢量.因此,pca.explained_variance_ratio_[i]给出了仅由第i + 1维解释的方差.

Yes, you are nearly right. The pca.explained_variance_ratio_ parameter returns a vector of the variance explained by each dimension. Thus pca.explained_variance_ratio_[i] gives the variance explained solely by the i+1st dimension.

您可能想执行pca.explained_variance_ratio_.cumsum().这将返回向量x,以使x[i]返回由前i + 1个维度解释的累积方差.

You probably want to do pca.explained_variance_ratio_.cumsum(). That will return a vector x such that x[i] returns the cumulative variance explained by the first i+1 dimensions.

import numpy as np
from sklearn.decomposition import PCA

np.random.seed(0)
my_matrix = np.random.randn(20, 5)

my_model = PCA(n_components=5)
my_model.fit_transform(my_matrix)

print my_model.explained_variance_
print my_model.explained_variance_ratio_
print my_model.explained_variance_ratio_.cumsum()


[ 1.50756565  1.29374452  0.97042041  0.61712667  0.31529082]
[ 0.32047581  0.27502207  0.20629036  0.13118776  0.067024  ]
[ 0.32047581  0.59549787  0.80178824  0.932976    1.        ]

所以在我的随机玩具数据中,如果我选择k=4,我将保留93.3%的差异.

So in my random toy data, if I picked k=4 I would retain 93.3% of the variance.

这篇关于Python scikit学习pca.explained_variance_ratio_截止的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持!

09-25 07:36